Java’s OptionalInt et al. versus Optional<T>

In Java 8 the Optional type was introduced to avoid the (ab)use of nullable types and null to indicate the absence of a value. It allows the programmer to clearly indicate whether the potential absence of a value is intentional or accidental.

Such option types, sometimes also called Maybe types, have been established in other programming languages, mostly in statically typed functional programming languages like ML and derivatives, but are also emerging in more mainstream languages like Swift.

Java’s Optional type is, to put it mildly, not the most sophisticated implementation of this concept, mostly due to limitations of Java’s existing type system. The Optional type is nullable itself, it’s not a sum type, so it has to rely on runtime exceptions to signal invalid access of a non-existent value, but it’s still useful. Static analysers, usually built into IDEs, can do what the compiler doesn’t and warn if the value is accessed without checking for its presence first.

The Optional type suffers from another limitation of Java’s type system: the fact that primitive types like int, long, double etc. and reference types, derived from Object, aren’t unified in a single type hierarchy. Related to that, primitive types can’t be used as generic type parameters in Java. The language works around this with additional boxed types like Integer, Long and Double for each primitive type.

When the stream API and the Optional type were introduced in Java 8, those primitive types were once again treated with special types: there’s not just Stream<T>, but also IntStream, LongStream, DoubleStream, there’s not just Optional<T>, but also OptionalInt, OptionalLong, OptionalDouble, the same for consumers, suppliers, predicates and functions.

This was done to avoid boxing and unboxing, but also makes it unpleasant to use. What’s worse is that the Optional variants for the primitive types don’t offer the same functionality as Optional<T>: they are lacking the filter, map and flatMap methods as well as the ofNullable factory method. All in all they are less useful than the real Optional, and there’s no convenient way to convert back and forth between, for example, an OptionalInt and Optional<Integer>.

The above mentioned annoyances are the reason why we prefer the generic variant over the special ones for the primitive types by default. Hopefully a future Java release will mitigate this dichotomy between those types, at least by adding the missing methods, but we are not aware of any plans for this yet.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.