Currently, we are in the process of porting a larger application from an Oracle database to a PostgreSQL database as an additional database system. The aim is for the application to be functional not only with one database system but with both: with Oracle for one customer and with PostgreSQL for another customer.
The first step in this process was to conduct a high-level analysis of what effort this would entail and where the application would need to be adjusted. The application consists of multiple services. A frontend service in Ruby on Rails and a variety of backend services in Java. Rails uses an O/R mapper called Active Record, which is relatively database-agnostic. No major adaptation effort was expected here. Ultimately, only the Active Record adapter needs to be configured per instance.
The Java services do not use an O/R mapper. They make direct SQL queries to the target database system using JDBC. This is where the greatest potential for issues existed. Fortunately, all database queries here are encapsulated in repository classes, making the SQL queries easily accessible and adaptable for different database management systems. However, this has not proven necessary so far. The SQL queries are written in standard SQL, without using database-specific features. The code is limited to basic features such as tables, views, sequences, SELECTs, INSERTs, UPDATEs, and JOINS, all of which are supported by both databases. Particularly, no stored procedures are used, which wouldn’t necessarily be portable.
For implementation, the initial goal was to make the existing Oracle database schema of the application reproducible on a PostgreSQL database, in a way that a new instance can be set up fresh in a Docker container at any time.
The best way to achieve this is with a database migration tool. The options considered were: Active Record Migrations, Liquibase, and Flyway. We ultimately chose Liquibase, which we have had positive experiences with. It can be used standalone and allows for formulating migrations in a database-independent manner. Additionally, it offers the option to export an existing schema as a migrations changelog file using the generate-changelog command.
We only had to slightly adjust the generated changelog to make it work for both database systems. In a Liquibase changelog, you can define variables referred to as properties, which can take on different values for various database systems. One use case for this is having different names for column data types:
<property name="varchar" value="varchar" dbms="postgresql"/>
<property name="varchar" value="VARCHAR2" dbms="oracle"/>
These properties can then be used, for example, in the following way:
<column name="DESCRIPTION" type="${varchar}(4000)">
Here’s a helpful table that maps Oracle datatypes to their equivalent PostgreSQL data types. After some editing of the changelog, mainly through search and replace, we had a migration for the database schema that works for both systems.