Debugging Web Pages for iOS

Web developers use browser tools like the Web Inspector in Chrome and Safari or the Developer Tools in Firefox to develop, debug and test web pages. In Safari you have to enable the developer menu first: Safari -> Preferences… -> Advanced -> Show develop menu in menu bar

All these tools offer modes where you can display the page layout at various screen sizes. In Safari this is called the Responsive Design Mode and can be found in the Develop menu. This is essential for checking the page layout for mobile devices. There are however some differences in behaviour, which can only be tested on the real devices or in a simulator. For example, dropdown menus can trigger a wheel selector on mobile devices, while the desktop browser renders them as regular dropdown menus, even in responsive design mode.

Here are some tips for debugging web pages for iOS devices in the simulator:

Using Web Inspector with the iOS Simulator

Within the mobile Safari browser you can’t simply open the Web Inspector console as you would do when developing a web page using a desktop browser. But you can connect the Web Inspector of your desktop Safari to the mobile Safari browser instance running in the iOS simulator:

  • Start the iOS simulator from Xcode: Xcode -> Open Developer Tool -> Simulator
  • Select the desired device: Hardware -> Device -> e.g. iOS 12.1 -> iPhone SE
  • Open the web page in Safari within the simulator
  • Open the desktop version of Safari

In Safari’s Develop menu the simulator now shows up as a device, e.g. “Simulator – iPhone SE – iOS 12.1 (16B91)”. The web page you opened in the simulator should be listed as submenu item. If you click this menu item the Web Inspector opens. It’s now connected to the simulated Safari instance and you can debug the mobile variant of your web page.

Workaround for Clearing the Cache

When using a desktop web browser one can easily bypass the local browser cache when reloading a web page by holding the shift key while pressing the reload button. Sometimes this is necessary to see changes in effect while developing a web application. However, this doesn’t work in Safari running within the iOS emulator. There’s a little workaround: You can open the web page in an incognito tab, which means the cache is cleared each time you close the tab and re-open it again in a new incognito tab.

Setting Grails session timeout in production

Grails 3 was a great update to the framework and kept it up-to-date with modern requirement in web development. Modularization, profiles, revamped build system and configuration were all great changes that made working with grails more productive and fun again.
I quite like the choice of YAML for the configuration settings because you can easily describe sections and hierarchies without much syntactic noise.

Unfortunately, there are some caveats. One of them went live and caused a (minor) irritation for our customer:

The session timeout was back to the 30 minutes default and not prolongued to the one hour we all agreed upon some years (!) ago.

Investigating the cause

Our configuration in application.yml was correctly set to the desired one hour timeout and in development everything was working as expected. But the thing is that the setting server.session.timeout is only applied to the embedded tomcat. If your application is deployed to a standalone servlet container this setting is ignored. Unfortunately it is far from obvious which settings in application.yml are used in what situation.

In the case of a standalone servlet container you would just edit your applications web.xml and the container would use the setting there. While this would work, it is not very nice because you have two locations for one setting. In software development we call that duplication. What makes things worse is, that there is no web.xml in our case! So what now?

The solution

We have two problems here

  1. Providing the functionality our customer desires
  2. Removing the code duplication so that development and production work the same way

Our solution is to apply the setting from application.yml to the HTTP-Session of the request using an interceptor:

class SessionInterceptor {
    int order = -1000

    SessionInterceptor() {

    boolean before() {
        int sessionTimeout = grailsApplication.config.getProperty('server.session.timeout') as int"Configured session timeout is: ${sessionTimeout}")

That way we use a single source of truth, namely the configuration in application.yml, both in development and production.


Ignoring YAGNI – 12 years later

Fourteen years ago, we started to build a distributed system to gather environmental data in an automated 24/7 fashion. Our development process was agile and made heavy use of short iterations (at least that was what they were then, today they are normal-sized). So the system grew with many small new features and improvements, giving the customer immediate business value.

One part of the system was the task scheduler. Because the system had to run 24/7 and be mostly independent of human interaction, the task scheduler’s job was to launch different measurement processes at the right time. We had done extensive domain crunching and figured out that all tasks follow a rigid time regime like “start every 10 minutes” or “start every hour”, regardless of the processes’ runtime. This made the scheduler rather easy to develop. You should keep it simple, after all.

But another result of the domain crunching bothered us: The schedule of all tasks originated from the previous software system, built 30 years ago and definitely unfit for the modern software world. The schedules weren’t really rooted in the domain, they all had technical explanations like “the recording of the values is done sequentially and takes up to 8 minutes, we can’t record them more often than that”. For our project, the measurement hardware was changed, so our recording took a couple of milliseconds. We could store and display the values continuously, if the need arises.

So we discussed the required simpleness or complexity of the task scheduler with the customer and they seemed pleased with all the new possibilities. But they decided that the current schedules were sufficient and didn’t need to be changed. We could go ahead and build our simple task scheduler.

And this is when we decided to abandon KISS and make the task scheduler more powerful than needed. “But you ain’t going to need it!” was the enemy. Because we knew that the customer will inevitably come around and make use of their new possibilities. We knew that if we build the system with more complexity, we would be the heroes in a future time, wearing a smug smile and telling the customer: “We’ve already built this, you can use it right away”. Oh how glorious this prospect of the future shone! Just a few more thoughts going into the code and we’re set for a bright future.

Let me tell you a few details about the “few more thoughts” with the example of an “every hour” task schedule. Instead of hard-coding the schedule, we added a configuration file with a cron-like expression for the schedule. You could now leverage the power of cron expressions to design your schedule as you see fit. If you wanted to change the schedule from “every hour” to “every odd minute and when the pale moon rises”, you could do so. The task scheduler had to interpret the configuration file and make sure that tasks don’t pile up: If you schedule a task to run “every minute”, but it takes two minutes to process, you’ve essentially built a time-bomb for your system load. This must not be feasible.

But it doesn’t stop there. A lot of functionality, most of which wasn’t even present or outlined at the time of our decision, relies implicitly on that schedule. Two examples: There are manual operations that must not be performed during the execution of the task. The system goes into a “protected state” around the task execution. It disables these operations a few minutes before the scheduled execution and even some time afterwards. If you had a fixed schedule of “every hour”, you could even hard-code the protected timespan. With a possible dynamic schedule, you have to calculate your timespan based on the current schedule and warn your operator if it isn’t possible anymore to find a time slot to even perform the manual operation.
The second example is a functionality that supervises the completeness of the recorded data. The problem is: This functionality is on another computer (it’s a distributed system, remember?) that doesn’t know about the configuration files. To be able to scan the data archive and say “everything that should be there, is there”, the second computer needs to know about all the schedules of the first computers (there are many of them, recording their data on their own schedules and transferring it to the second computer). And if a schedule changes, the second computer needs to take the change into account and scan the data archive for two areas: one area with the old schedule and one area with the new schedule. Otherwise, there would be false alarms.

You can probably see that the one decision to make the task scheduler a little more complex and configurable as required had quite some impact on the complexity of other parts of the system. But this investment will be worth it as soon as the customer changes the schedule! The whole system is programmed, tested and documented to facilitate schedule changes. We are ready!

It’s been over twelve years since we wrote the first line of code for the more complex implementation (I’ve checked the source control logs). The customer hasn’t changed a single bit of the schedule yet. There are over twenty “first computers” and they all still run the same task schedule as initially planned. Our decision did nothing but to add accidental complexity to the system. It probably introduced some bugs along the way, too. It certainly increased our required level of awareness (“hurdle of understanding”) during the development of features that are somewhat coupled with the task schedule.

In short: It’s been a disaster. The smug smile we thought we’d wear has been replaced by a deep frown. Who wrote all that mess? And why? It wasn’t the customer, it was us. We will never be going to need it.

Integrating conan, CMake and Jenkins

In my last posts on conan, I explained how to start migrating your project to use a few simple conan libraries and then how to integrate a somewhat more complicated library with custom build steps.

Of course, you still want your library in CI. We previously advocated simply adding some dependencies to your source tree, but in other cases, we provisioned our build-systems with the right libraries on a system-level (alternatively, using docker). Now using conan, this is all totally different – we want to avoid setting up too many dependencies on our build-system. The fewer dependencies they have, the less likely they will accidentally be used during compilation. This is crucial to implement portability of your artifacts.

Setting up the build-systems

The build systems still have to be provisioned. You will at least need conan and your compiler-suite installed. Whether to install CMake is a point of contention – since the CMake-Plugin for Jenkins can do that.

Setting up the build job

The first thing you usually need is to configure your remotes properly. One way to do this is to use conan config install command, which can synchronize remotes (or the whole of the conan config) from either a folder, a zip file or a git repository. Since I like to have stuff readable in plain text in my repository, I opt to store my remotes in a specific folder. Create a new folder in your repository. I use ci/conan_config in this example. In it, place a remotes.txt like this:

bincrafters True
conan-center True

Note that conan needs a whole folder, you cannot read just this file. Your first command should then be to install these remotes:

conan config install ci/conan_config

Jenkins’ CMake for conan

The next step prepares for installing our dependencies. Depending on whether you’re building some of those dependencies (the --build option), you might want to have CMake available for conan to call. This is a problem when using the Jenkins CMake Plugin, because that only gives you cmake for its specific build steps, while conan simply uses the cmake executable by default. If you’re provisioning your build-systems with conan or not building any dependencies, you can skip this step.
One way to give conan access to the Jenkins CMake installation is to run a small CMake script via a “CMake/CPack/CTest execution” step and have it configure conan appropriatly. Create a file ci/configure_for_conan.cmake:

execute_process(COMMAND conan config set general.conan_cmake_program=\"${CMAKE_COMMAND}\")

Create a new “CMake/CPack/CTest execution” step with tool “CMake” and arguments “-P ci/configure_for_conan.cmake”. This will setup conan with the given cmake installation.

Install dependencies and build

Next run the conan install command:

mkdir build && cd build
conan install .. --build missing

After that, you’re ready to invoke cmake and the build tool with an additional “CMake Build” step. The build should now be up and running. But who am I kidding, the build is always red on first try 😉

Domain-aligned bugs

Frank C. Müller [CC BY-SA 4.0 ( ]

Imagine that you are an user of a typical enterprise software that handles commercial products and their prices. There are different prices in the software that are somehow related to each other. There is the purchase price that indicates your cost if you buy the product. There is the retail price that gets listed in your price lists and is paid by your customers, should they buy the product. You probably already figured out that the retail price should never be lower than the purchase price, because that would mean you lose money with every successful sale.

Let’s say that the enterprise software not only handles products, but also parts. Several parts combined, with some manufacturing effort, result in a product. Each part has a purchase price, the resulting product has a retail price. The retail price of the product should be higher than the sum of purchase prices of the parts. If it isn’t, you lose the costs of the manufacturing effort and some extra money with every successful sale.

If for any reason you cannot clearly estimate your manufacturing effort, the enterprise software has another input field for an amount of money that you can add to the sum of the parts’ costs. We call this field the “sales bonus”. So, if you sell a product made up of parts, your customer has to pay a price that consists at least of the retail prices of the parts and the sales bonus. Of course, your customer has an individual discount percentage that needs to be subtracted from the total price. Are you still following?

You are now thinking in the domain of price determination and financial mathematics. If you were the user of said enterprise software, you’d probably expect some bugs like these:

  • It is possible to enter a retail price lower than the purchase price
  • The price of products manufactured from parts isn’t calculated correctly
  • It is possible to enter a negative sales bonus
  • The total price with discount could be lower than the sum of purchase prices of the parts without a warning

All of them are bugs in the domain. All of them can be explained to a domain expert or a user with terms and concepts from the domain.

But what about the bug when you sell a product that consists of three parts, each with a retail price of 10 €, and a sales bonus of 5 €. You want to create a quote for your customer and the price shows up as 34,99999999998 €. You are a bit bewildered and try to countervail the apparent rounding error by changing the sales bonus to 5,00000000002 €. After this change you get another crazy total price and your prices in the database are different from what you entered, too. Everything seems to destabilize and deviate further and further from clear cut prices.

As a programmer, you know what happened. You know what caused this effect of numerical instability. Somebody stored monetary values in a floating point number. You know that is a bad idea and you’d never do this. But this blog post isn’t about you or what you should do or not do. It is about the user, expert in his domain, that stumbles over the bug as described and has to make some decision on how to fix it. This user cannot use any knowledge from the domain to even understand the mechanics of the bug. You, as the programmer, cannot explain this bug in terms of things the user already knows. You need to be vague (“the software doesn’t store the exact values, just approximations”) or introduce additional complexity (“we store this value by splitting it into a significand and multiply it with a factor consisting of a fixed base and an exponent. We can omit the base and just store the significand and the exponent and express a very large numerical range in just a few bits. Think about how cool that is!”).

Read the last explanation again, from the viewpoint of a salesman. We want to add some prices in the range of a few €, slap a moderate discount on top and call it a day. We don’t care about bits or exponential formulas. That is not part of our domain and it shouldn’t affect our domain or software that works in our domain. Confronting us with technical details reflects negatively on your ability to solve our problems. You seem to burden us with your problems in exchange.

As domain experts, we want only domain-aligned bugs.

Using protobuf with conan and CMake

In my last post, I showed how I got my feet wet while migrating the dependencies of my existing code-base to conan. The first major hurdle I saw coming when I started was adding something with a “special” build step, e.g. something like source-preprocessing. In my case, this was protobuf, where a special build-step converts .proto files to sources and headers.

In my previous solution, my devenv build scripts would install the protobuf converter binary to my devenv’s bin/ folder, which I then used to run my preprocessing. At first, it was not obvious how to do this with conan. It turns out that the lovely people and bincrafters made this pretty comfortable. conan_basic_setup() will add all required package paths to your CMAKE_MODULE_PATH, which you can use to include() some bundled CMake scripts that will either let you execute the protobuf-compiler via a target or run protobuf_generate to automagically handle the preprocessing. It’s probably worth noting, that this really depends on how the package is made. Conan does not really have an official way on how to handle this.

Let’s start with some sample code – Person.proto, like the sample from the protobuf website:

message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;

And some sample code that uses it:

#include "Person.pb.h"

int main(int argn, char** argv)
  Person message;
  message.set_name("Hello Protobuf");
  std::cout << << std::endl;

Again, we’re using the bincrafters repository for our dependencies in a conanfile.txt:




Now we just need to wire it all up in the CMakeLists.txt

cmake_minimum_required(VERSION 3.0)

conan_basic_setup(TARGETS KEEP_RPATHS)

# This loads the cmake/protoc-config.cmake file
# from the protoc_installer dependency

set(TARGET_NAME ProtobufSample)

# Just add the .proto files to the target

# Let this function to the magic
protobuf_generate(TARGET ${TARGET_NAME})

# Need to use protobuf, of course
  PUBLIC CONAN_PKG::protobuf

# Make sure we can find the generated headers

There you have it! Pretty neat, and all without a brittle find_package call.

Book review: A Philosophy of Software Design

This blog entry is structured in two main parts: The prologue sets the tone, but may be irritating because it doesn’t talk about the book itself. If you get irritated or know the topic well enough to skip it, you can jump to the second part when I talk about the book. It is indicated by a TL;DR summary of the prologue.


Imagine a world where the last 25 years of computer game development didn’t happen. A world where we get the power of 5 GHz octacore computers and 128 GB of RAM, but nobody thought about 3D graphics or interaction design. The graphics of computer games is so rudimentary, it consists of ASCII art and color. In this world, two brothers develop a game that simulates a whole fantasy world with all details, in three dimensions. The game is an instant blockbuster hit and spawns multiple cinematic adaptions.
This world never happened. The only thing that seems to be from this world is the game itself: Dwarf Fortress. An ASCII art sandbox simulation of a bunch of dwarves that dig into the (three-dimensional) mountains and inevitably discover the fun in magma. Dwarf Fortress is a game told by stories, not graphics. It burdens the player to micro-manage a whole settlement down to the individual sock – Yes, no plural. There are left socks and right socks and they are different entities with a different story. Dwarves can literally go mad because they miss their favorite left sock and you didn’t notice in time. And you have to control all aspects of the settlement not by direct order, but by giving hints and suggestions through an user interface that is a game of riddles on its own.
Dwarf Fortress is an impossible game. It seems so out of time and touch with current gaming reality that you can only shake your head on first contact. But, it is incredibly deep and well-designed and, most surprising, provides the kind player with endless fun. This game actually works!

TL;DR: Just because something seems odd at first contact doesn’t mean it cannot work. Go and play Dwarf Fortress!

The book

John Ousterhout is a professor teaching software design at the Stanford university and writes software for decades now. In 1988, he invented the Tcl programming language. He got a lot of awards, including the Grace Murray Hopper Award. You can say that he knows what he’s doing and what he talks about. In 2018, he wrote a book with the title “A Philosophy of Software Design”. This book is a peculiar gem besides titles with a similar topic.

Imagine a world where the last 20 years of software development books didn’t happen. One man creates software for his whole life and writes down his thoughts and insights, structured in tactical advices, strategic approaches and an overarching philosophy. He has to invent some new vocabulary to express his ideas. He talks about how he performs programming – and it is nothing like today’s mainstream. In fact, it is sometimes the exact opposite of today’s best practices. But, it is incredibly insightful and well-structured and, most surprising, provides the kind developer with endless fun. Okay, I admit, the latter part of the previous sentence was speculative.

This is a book that seems a bit out of touch with today’s mainstream doctrine – and that’s a good thing. The book begins by defining some vocabulary, like the notion of complexity or the concept of deepness. That is rare by itself, most books just use established words to deliver a message. If you think about the definitions, they will probably enrich your perception of software design. They enriched mine, and I talk about software design to students for nearly twenty years now.

The most obvious thing that is different from other books with similar content: Most other books talk about behaviours, best practices and advices. Then they throw a buch of prohibitions in the mix. This isn’t wrong, but it’s “just” anecdotal knowledge. It is your job as the reader to discern between things that may have worked in the past, but are outdated and things that will continue to work in the future. The real question is left unanswered: Why is it so?

“A Philosophy of Software Design” begins by answering the “why” question. If you want to build an hierarchy of book wisdom depth, this might serve as one:

  • Tactical wisdom: What should be done? Most beginner’s books work on this level. They show exactly what goes on, but go easy on the bigger questions.
  • Strategic wisdom: How should it be done? This is the level that the majority of good software design books work on. They give insights about your work ethics and principles you should abide by.
  • Philosphical wisdom: Why should it be done? The reviewed book begins on this level. It explains the aspects of software and sourcecode that work against human perception and understanding and shows ways to avoid or at least diminish those aspects.

The book doesn’t stay on the philosophical level for long and dives deep into the “how” and “what” areas later on. But it does so with the background of an established “why”. And that’s a great reminder that even if you disagree with a specific “what” (or “how”), you should think about the root cause of your disagreement, not just anecdotes.

The author and the book aren’t as out-of-touch with current software development reality as you might think. There is a whole chapter addressed to current “software trends” like agile development and unit tests. It has a total page count of six pages and doesn’t go into details. But it at least mentions the things it doesn’t talk about.


My biggest learning point from the book for my personal habits as a developer is to write more code comments in the way the book proposes. Yes, you’ve read that right. The book urges you to write more comments – but good ones. It talks about why you should write more comments. It gives you extensive guidelines as to how good comments are written and some examples what these comments look like. After two decades of “write more (unit) tests!”, the message of “write more comments!” is unique and noteworthy. Perhaps we can improve our tools to better support comments in the same way they improved support for tests in the last years.

Perhaps we cannot solve our problems with the sourcecode by writing more sourcecode (unit tests). Perhaps we need to rely on something different. I will give it a try.

You might want to give the book “A Philosophy of Software Design” a try. It’s worth your time and thoughts.