The best of both worlds: scoped_flags

C++11 introduced a pretty nice change to enum types in C++, the scoped enumeration. They mostly supersede the old unscoped enumeration, which was inherited from C and had a few shortcomings. For example, the names in the enumeration where added to its parent scope. This means that given an enum colors {red, green blue}; you can simply say auto my_color = red;. This can, of course, lead to ambiguities and people using some weird workarounds like putting the enums in namespaces or prefixing all elements á la hungarian-notation. Also, unscoped enumerations are not particularly type-safe: they can be converted to integer types and back without any special consideration, so you can write things like int x = red; without the compiler complaining.
Scoped enumerations improves both theses aspects: with enum class colors {red, green, blue};, you have to use auto my_color = colors::red; and int x = colors::red; will simply not compile.
To get the second part to compile, you need to insert a static_cast: int x = static_cast(colors::red); which is purposefully a lot more verbose. Now this is a bit of a blessing and a curse. Of course, this is a lot more type-safe, but it make one really common usage pattern with enums very cumbersome: bit flags.

Did this get worse?

While you could previously use the bit operators to combine different bitmasks defined as enums, scoped enumerations will only let you do that if you cast them first. In other words, type-safety prevents us from combining flags because the result might, of course, no longer be a valid enum.
However, we can still get the convenience and compactness of bit flags with a type that represents combinations bitmasks from a specific enum type. Oh, this reeks of a template. I give you scoped_flags, which you can use like this:

enum class window_flags
{
  has_border = 1 << 0,
  has_caption = 1 << 1,
  is_child = 1 << 2,
  /* ... */
};
void create_window(scoped_flags<window_flags> flags);

void main()
{
  create_window({window_flags::has_border, window_flags::has_caption});
}

scoped_flags<window_flags> something = /* ... */

// Check a flag
bool is_set = something.test(window_flags::is_child);

// Remove a flag
auto no_border = something.without(window_flags::has_border);

// Add a flag
auto with_border = something.with(window_flags::has_border);

Current implementation

You can find my current implementation on this github gist. Even in its current state, I find it a niftly little utility class that makes unscoped enumerations all but legacy code.
I opted not to replicate the bitwise operator syntax, because &~ for “without” is so ugly, and ~ alone makes little sense. A non-explicit single-argument constructor makes usage with a single flag as convenient as the old C-style variant, while the list construction is just a tiny bit more complicated.
The implementation is not complete or final yet; for example without is missing an overload that gets a list of flags. After my previous adventures with initializer_lists, I’m also not entirely sure whether std::initializer_list should be used anywhere but in the c’tor. And maybe CTAD could make it more comfortable? Of course, everything here can be constexpr‘fied. Do you think this is a useful abstraction? Any ideas for improvements? Do tell!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.