Game Optimization Resolved

In my last blog post, I explained a performance problem in my game abstractanks but not how I solved it.

So I had not done any optimization work in a while, so the first thing I did turned out to be an error. And not only in hindsight – I actually knew how to tackle a problem like that – I just temporarily forgot at that point.

Going down the rabbit hole

Where we left off, my profiler showed FriendlyUnitOccupies as the culprit. That function basically does circle/circle collision detection using a quad-tree as the spatial acceleration structure. Looking at the samples from my profiler, I could see that that it was descending into the tree quite deeply. Like all tree structures, a quad-tree does pointer-chasing which is very bad for modern CPUs. So I figured I should look at how to optimize that. The data structure was implemented in a hurry, so there seemed plenty to do:

  • Instead of recursing into each node, use tail-call optimization and early culling to speed up traversal.
  • Pre-cache the query with the max-search radius and the other requirements to the units, e.g. not dead, same team, etc.. and then use that to build a new tree for the actual queries.

Because the data structure was pretty non-generic, I started to basically rewrite it to use it in this scenario. While I was about half way through with that, it dawned on me that I was barking at the wrong tree.

Taking a step back

The excellent book Video Game Optimization has some great advice on which level to attack an optimization problem.

  1. System-level. Can you change the system to do something differently and still solve your problem?
  2. Algorithm-level. Are you using the most efficient right algorithm for the data you have?
  3. Micro-level. Are you not wasting any processing power on the lower levels?

I was already on the algorithm level. So I went back to the systemic level: What if the AI did not try to change the target position that often, maybe just every few seconds? That effectively meant lowering the AIs APM. It’s not a bad solution, especially since that makes the AI behave more human. But on the other hand, real-time games, as the name implies, have a soft real-time requirement. So you generally like to avoid huge workloads that go over your frame budget. With how slow the algorithm was, that could easily be the case. The solution is then to do the work concurrently, either by splitting it up or doing it in the background. Both solutions seemed difficult, since the AI code does currently not allow for easy concurrency. So that idea was out.

What if the parking-positions where cached? Subsequent calls to get parking positions could probably reuse a lot of the positions that were computed in previous frames, given that the target point only moves by a little bit each frame. I figured that might work, but it requires more housekeeping and data-dependencies – the result of the previous query needs to be used for the next. That seemed complex and therefore brittle.

A Solution?

Temporal coherency was a pretty good idea though, but not the scale was to big this time. What if I exploited it within a single frame? Now the original code did obscure this, but maybe it gets a little more clear if I write it like this:

optional<v2> GameWorld::FindFreePosition(v2 Center, std::vector<v2> const& Occupied)
{
  auto CheckPosition = [&](v2 Candiate)
  {
    if (!IsPassable(Candidate))
      return false;

    if (OverlapsWith(Occupied))
      return false;

    return !FriendlyUnitOccupies(Candidate);  
  };
  auto Samples = SampledPositions(Center, SomeRandomness());
  auto Found = find_if(SampledPositions.begin(), SampledPositions.end(), CheckPosition(Position));
  
  return (Found != SampledPositions.end()) ? *Found : none;
}

Now as I explained in the previous post, this was called in a loop for each unit to be parked.

std::vector<v2> GameWorld::FindParkingPositions(v2 Center, std::size_t N)
{
  std::vector<v2> Results;
  for (std::size_t i = 0; i < N; ++i)
  {
    auto MaybePosition = FindFreePosition(Center, Results);
    if (!MaybePosition) // No more free space?
      break;
    Results.push_back(*MaybePosition);
  }
  return Results;
}

Easy to see: counting the number of CheckPosition calls, this algorithm is O(n) in number of sampled positions. The number of sampled positions depends linearly on the number of units to be parked, because more units obviously need more parking positions, essentially making this O(n²) for the unit count! But the positions get resampled for each unit – with the only change being the little bit of randomness that is injected everytime. In other words, each call would just test false for sampled positions roughly corresponding to the units that are already placed.

So what I did was a very small change: only inject the randomness once and merge the loops:

auto Samples = SampledPositions(Center, SomeRandomness());
std::vector<v2> Results;

for (auto const& Sample : Samples)
{
  if (CheckPosition(Sample))
    Results.push_back(Sample);

  if (Result.size() >= N)
    break;
}
return Results;

And this did the trick! The algorithm’s run-time when below the 1ms range, and the smaller variation in randomness is not really visible.

Conslusions

I was thrown off-track be the false conclusion that CheckPositions was too slow when it was in fact just called too often. Context is key! Always approach these things outside-in.
Using less-than-optimal abstractions obscured the opportunity to hoist out the sample generation from me. Iteration is always a separate concern, even when it is not on containers!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.