Oracle database identity column

A few days ago, I came across the topic of identity columns in Oracle. So I decided to try it out to check if it would benefit my database tables.  I would like to share the results in this article. First, I will explain what identity columns are and how to create them.

General

If you declare a column as an identity column, the value will be automatically populated from an associated sequence generator. It is possible to add an identity column by using either the CREATE TABLE or ALTER TABLE statement. In the example below, I will show how to add it using the CREATE TABLE statement.

The column marked as an identity needs to be of the data type integer, long, or number.

CREATE TABLE EXAMPLE (
    id NUMBER GENERATED ALWAYS AS IDENTITY,
    ...
);

In this case, I ALWAYS want a value to be automatically filled in. There is also the option to only fill it if no value was specified (BY DEFAULT) or when the given value is null (BY DEFAULT ON NULL).

Additionally, you can configure the sequence as shown in the following example.

CREATE TABLE EXAMPLE (
    id NUMBER GENERATED ALWAYS AS IDENTITY
    (START WITH 1 INCREMENT BY 2 MAXVALUE 5000 NO CYCLE CACHE 100),
    ...
);

With these  settings, the sequence starts with 1 and increments by 2, so the values are 1, 3, 5, and so on. The sequence counts up to 2000 and then stop. If CYCLE is set, the sequence continues with 1 again.

The cache defines a client to request 100 pre-defined values in advance. Because of the step width of 2 for example the values 1 – 199 will be assigned. If a second client asks, it will receive the values 201 – 399. As a result, the entries in the table can have the IDs 1, 201, 3, 5, 7, 203 for example.

Using with Ruby on Rails / Active Records

My use case is to use the table in Ruby on Rails with Active Records. Here, I want Active Record to auto-increment the ID, so I can retrieve it in my program. However, if I do not use the identity column feature and also do not specify the name of a manually created sequence, Ruby always returns 0 as the ID. When I add a sequence name, I get the correct ID.

Now I am trying to change this to work with the identity column. The insert in Oracle directly with SQL works fine.

The next step is to use it in my Ruby program, and the first problem occurs. Unfortunately, it is not possible to define my own sequence name. Oracle automatically creates sequences with cryptic names like ISEQ$$_12345 for identity columns which reduces readability in code. Additionally if I recreate the table, the sequence name changes, which means I have to update my code afterwards. This seems to be the first showstopper.

Nonetheless I continue and try to create a new entry with it. The entry was created. It works! Or wait a moment. Ruby always shows 0 instead of the right ID. It seems like the program can not use the sequence correctly.  I halt my testing. Maybe it is possible to make Ruby work with identity sequences, maybe it is not. If you have already found a solution, feel free to comment.

In the end I decide that using the manually created sequence still fit better. The main reason is the naming, so I do not want to spend more time searching for a solution to make it work with Ruby.

Conclusion

Although the identity column option does not fit my use case, it is a possible to create a table column with auto-generated values in Oracle. For situations where the ID is not of interest, it can simplify the work. You do not have to create the logic with sequences and triggers on your own.

Understanding, identifying and fixing the N+1 query problem

One of the most common performance pitfalls for applications accessing data from databases is the so-called “N+1 query problem”, or sometimes also called the “N+1 selects problem”. It is the first thing you should look for when an application has performance issues related to database access. It is especially easy to run into with object-relational mappers (ORMs).

The problem

The problem typically arises when your entity-relationship model has a 1:n or n:m association. It exists when application code executes one query to get objects of one entity and then executes another query for each of these objects to get the objects of an associated entity. An example would be a blog application that executes one query to fetch all authors whose names start with the letter ‘B’, and then another query for each of these authors to fetch their articles. In pseudocode:

# The 1 query
authors = sql("SELECT * FROM author WHERE name LIKE 'B%'");

# The N queries
articles = []
FOR EACH author IN authors:
    articles += sql("SELECT * FROM article WHERE author_id=:aid", aid: author.id)

The first query is the “1” in “N+1”, the following queries in the loop are the “N”.

Of course, to anybody who knows SQL this is a very naive way to get the desired result. However, OR mappers often seduce their users into writing inefficient database access code by hiding the SQL queries and allowing their users to reach for the normal tools of their favorite programming language like loops or collection operations such as map. A lot of popular web application frameworks come along with OR mappers: Rails with Active Record, Grails with GORM (Hibernate based), Laravel with Eloquent.

How to detect

The easiest way to detect the problem in an application is to log the database queries. Virtually all ORMs have a configuration option to enable query logging.

For Grails/GORM the logging can be enabled per data source in the application.yml config file:

dataSource:
    logSql: true
    formatSql: true

For Rails/ActiveRecord query logging is automatically enabled in the development environment. Since Grails 5.2 the Verbose Query Logs format is enabled by default, which you had to explicitly enable in earlier versions.

For Laravel/Eloquent you can enable and access the query log with these two methods/functions:

DB::connection()->enableQueryLog();
DB::getQueryLog();

Once query logging is enabled you will quickly see if the same query is executed over and over again, usually indicating the presence of the N+1 problem.

How to fix

The goal is to replace the N+1 queries with a single query. In SQL this means joining. The example above would be written as a single query:

SELECT article.*
FROM article
JOIN author
  ON article.author_id=author.id
WHERE author.name LIKE 'B%'

The query interface of ORMs usually allows you to write joins as well. Here the example in ActiveRecord:

Article.joins(:authors).where("authors.name LIKE ?", "B%")

Another option when using ORMs is to enable eager loading for associations. In GORM this can be enabled via the fetchMode static property:

class Author {
    static hasMany = [articles: Article]
    static fetchMode = [articles: 'eager']
}

REST APIs

The problem isn’t limited to SQL databases and SQL queries. For REST APIs it’s the “N+1 requests problem”, describing the situation where a client application has to call the server N+1 times to fetch one collection resource + N child resources. Here the REST-API has to be extended or modified to serve the client’s use cases with a single request. Another option is to offer a GraphQL API instead of a REST API. GraphQL is a query language for HTTP APIs that allows complex queries, so the client application can specify exactly what resources it needs with in a single request.