Adding a dynamic React page to your classic grails multi-page application

We are developing and maintaining a more than 10 years old classic multi-page application based on the Grails web framework. With the advent of HTML 5 and modern browsers with faster JavaScript engines user expect more and more dynamic and pleasant user experience (UX) from web applications. Our application is used by hundreds of users and our customer expects a stable, familiar and feature-rich experience that continues to improve over time. Something like a complete rewrite of the UI is way out of scope time- and budget-wise.

One of the new feature requests would benefit highly from a client-side JavaScript implementation so we looked at our options. Fortunately it is quite easy to integrate a react app with grails and the gradle build system. So we implemented the new page almost completely as a react app while leaving all the other pages as normal server-side rendered Groovy Server Pages (GSP). The result is quite convincing and opens up a transition path to more and more dynamic client-side pages and perhaps even to the complete transformation to a single-page-application (SPA) in a distant future.

Integrating a React-App into Grails build process

The Grails react-webpack profile can serve as a great starting point to integrate a react app into an existing grails project. First you create the react app for the new page in the folder src/main/webapp, using the create-react-app scripts for example. Then you need to add a $GRAILS_PROJECT/webpack.config.js to configure webpack appropriately like so:

var path = require('path');

module.exports = {
  entry: './src/main/webapp/index.js',
  output: {
    path: path.join(__dirname, 'grails-app/assets/javascripts'),
    publicPath: '/assets/',
    filename: 'bundle.js'
  module: {
    rules: [
        test: /\.js$/,
        include: path.join(__dirname, 'src/main/webapp'),
        use: {
          loader: 'babel-loader',
          options: {
            presets: ["@babel/preset-env", "@babel/preset-react"],
            plugins: ["transform-class-properties"]
        test: /\.css$/,
        use: [
        test: /\.(jpe?g|png|gif|svg)$/i,
        use: {
          loader: 'url-loader?limit=10000&prefix=assets/!img'

The next step is to move the package.json to the $GRAILS_PROJECT directory because we want gradle tasks to take care of building and bundling it as a grails asset. To make this convenient we add some gradle tasks employing yarn to our build.gradle:

buildscript {
    dependencies {
        classpath "com.moowork.gradle:gradle-node-plugin:1.2.0"


apply plugin:"com.moowork.node"


node {
    version = '12.15.0'
    yarnVersion = '1.22.0'
    distBaseUrl = ''
    download = true

task bundle(type: YarnTask, dependsOn: 'yarn') {
    group = 'build'
    description = 'Build the client bundle'
    args = ['run', 'bundle']

task webpack(type: YarnTask, dependsOn: 'yarn') {
    group = 'application'
    description = 'Build the client bundle in watch mode'
    args = ['run', 'start']



Now we have integrated our new react app with the grails build system and packaging. The webpack task allows updating the javascript bundle on the fly so that we have almost the same hot reloading support when developing as with the rest of grails.

Delivering the react app as a page

Now that we have integrated the react app in the build and packaging process of our grails application we need to deliver it when the new page is requested by the browser. This is quite simple and straightforward and can be achieved with a GSP like so:

    <meta name="layout" content="main"/>
        <g:message code="example.header"/>
    <div id="react-content">
    <asset:javascript src="bundle.js"/>

Now you just have to develop the endpoints for the javascript app in form of normal grails controllers rendering JSON instead of GSP views. This is extremely easy using groovy maps and the grails JSON converters:

import grails.converters.JSON

class DataApiController {

    def getData = {
        def responseData = [
            name: 'John',
            age: 37
        render responseData as JSON


Grails and its build infrastructure is flexible enough to easily integrate SPA pages into an existing traditional web application. This allows you to deliver modern UX and features expected by nowadays users without completely rewriting your trusty and proven grails application. The process can be gradually and individual pages/views can be renewed when needed. That way you can continually add value to your customer while incrementally modernizing your application.

How to disable IP address logging for Apache web server and Tomcat

The General Data Protection Regulation (GDPR) prohibits excessive or unnecessary collection of personal data. IP adresses in server log files are considered personal data.

Logging of IP addresses is usually enabled by default in fresh web server installations. This article describes how to disable it for the Apache web server and the Tomcat application server, which are a common combination for JVM based web applications.

Apache Web Server

The apache web server logs the HTTP requests from web clients in log files called *access.log, which includes IP addresses. Another apache log file, which can contain IP addresses is error.log.

To disable IP address logging for Apache edit the main configuration file, usually called httpd.conf and scan it for LogFormat entries, for example:

LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" combined

The format ‘verb’ %h stands for the hostname or IP address. This is what you want to remove. You may also want to remove the “Referer” and “User-Agent” components of the log format for privacy:

LogFormat "%l %u %t \"%r\" %>s %O" combined

Restart the server for the changes to take effect.

Tomcat Application Server

For Tomcat you have to configure the so-called AccessLogValve in the server.xml configuration file located in the $CATALINA_HOME/conf directory. The configuration entry looks like this:

<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
       prefix="localhost_access_log." suffix=".txt"
       pattern="%h %l %u %t "%r" %s %b" />

The pattern attribute specifies the log format. Again, the relevant format verb you want to remove is %h for the hostname or IP address:

       pattern="%l %u %t "%r" %s %b" />

Restart the server for the changes to take effect.

Debugging Web Pages for iOS

Web developers use browser tools like the Web Inspector in Chrome and Safari or the Developer Tools in Firefox to develop, debug and test web pages. In Safari you have to enable the developer menu first: Safari -> Preferences… -> Advanced -> Show develop menu in menu bar

All these tools offer modes where you can display the page layout at various screen sizes. In Safari this is called the Responsive Design Mode and can be found in the Develop menu. This is essential for checking the page layout for mobile devices. There are however some differences in behaviour, which can only be tested on the real devices or in a simulator. For example, dropdown menus can trigger a wheel selector on mobile devices, while the desktop browser renders them as regular dropdown menus, even in responsive design mode.

Here are some tips for debugging web pages for iOS devices in the simulator:

Using Web Inspector with the iOS Simulator

Within the mobile Safari browser you can’t simply open the Web Inspector console as you would do when developing a web page using a desktop browser. But you can connect the Web Inspector of your desktop Safari to the mobile Safari browser instance running in the iOS simulator:

  • Start the iOS simulator from Xcode: Xcode -> Open Developer Tool -> Simulator
  • Select the desired device: Hardware -> Device -> e.g. iOS 12.1 -> iPhone SE
  • Open the web page in Safari within the simulator
  • Open the desktop version of Safari

In Safari’s Develop menu the simulator now shows up as a device, e.g. “Simulator – iPhone SE – iOS 12.1 (16B91)”. The web page you opened in the simulator should be listed as submenu item. If you click this menu item the Web Inspector opens. It’s now connected to the simulated Safari instance and you can debug the mobile variant of your web page.

Workaround for Clearing the Cache

When using a desktop web browser one can easily bypass the local browser cache when reloading a web page by holding the shift key while pressing the reload button. Sometimes this is necessary to see changes in effect while developing a web application. However, this doesn’t work in Safari running within the iOS emulator. There’s a little workaround: You can open the web page in an incognito tab, which means the cache is cleared each time you close the tab and re-open it again in a new incognito tab.

Setting Grails session timeout in production

Grails 3 was a great update to the framework and kept it up-to-date with modern requirement in web development. Modularization, profiles, revamped build system and configuration were all great changes that made working with grails more productive and fun again.
I quite like the choice of YAML for the configuration settings because you can easily describe sections and hierarchies without much syntactic noise.

Unfortunately, there are some caveats. One of them went live and caused a (minor) irritation for our customer:

The session timeout was back to the 30 minutes default and not prolongued to the one hour we all agreed upon some years (!) ago.

Investigating the cause

Our configuration in application.yml was correctly set to the desired one hour timeout and in development everything was working as expected. But the thing is that the setting server.session.timeout is only applied to the embedded tomcat. If your application is deployed to a standalone servlet container this setting is ignored. Unfortunately it is far from obvious which settings in application.yml are used in what situation.

In the case of a standalone servlet container you would just edit your applications web.xml and the container would use the setting there. While this would work, it is not very nice because you have two locations for one setting. In software development we call that duplication. What makes things worse is, that there is no web.xml in our case! So what now?

The solution

We have two problems here

  1. Providing the functionality our customer desires
  2. Removing the code duplication so that development and production work the same way

Our solution is to apply the setting from application.yml to the HTTP-Session of the request using an interceptor:

class SessionInterceptor {
    int order = -1000

    SessionInterceptor() {

    boolean before() {
        int sessionTimeout = grailsApplication.config.getProperty('server.session.timeout') as int"Configured session timeout is: ${sessionTimeout}")

That way we use a single source of truth, namely the configuration in application.yml, both in development and production.


Configurable React backend in deployment

In my last post I explained how to make you React App configurable with the backend endpoint as an example. I did not make clear that the depicted approach is build-time configurability.

If you want deploy- or runtime-time configurability the most simple approach is to provide global variables in your index.html like so:

<!DOCTYPE html>
<html lang="en">
      window.REACT_APP_BACKEND_API_BASE_URL= 'http://some.other.server:5000';
        settingA: 'aValue',
        anotherSetting: 'anotherValue'
      You need to enable JavaScript to run this app.
    <div id="root"></div>

We use (or activate) this configuration similar to the build-time approach with .env files:

// If we have a differing backend configured, replace the global fetch()
// instead of process.env.REACT_APP_BACKEND_API_BASE_URL
// we now use window.REACT_APP_BACKEND_API_BASE_URL
if (window.REACT_APP_BACKEND_API_BASE_URL !== undefined
    && window.REACT_APP_BACKEND_API_BASE_URL !== '') {

That way an automated process or a human administrator can deploy the same artifact to different servers with customized settings. This approach is briefly explained in the create-react-app documentation. In addition a server-side application could replace placeholders dynamically in the html file, e.g. with data from a configuration database.

I personally like this approach because it allows us to use the same build artifact for internal testing, staging systems and production at the clients site. It also allows the client to make some basic configuration themselves.

Cache configuration with WildFly, Infinispan, CDI and JCache

This post is about a specific problem I encountered using the WildFly application server in combination with the Infinispan cache module, CDI and the JCache API. If you don’t use this combination of technologies this post is probably not relevant or interesting to you, but I hope it will help someone who encounters the same problem.

The problem

After upgrading an application from WildFly 10 to WildFly 13 it became apparent that the settings for the Infinispan caches from the WildFly configuration file are no longer applied to the caches used by the application.

The cache settings in the WildFly configuration specify a cache container, several local caches and the object memory sizes and expiration lifespans of these caches:

<subsystem xmlns="urn:jboss:domain:infinispan:6.0">
  <cache-container name="myapp" default-cache="default" module="org.wildfly.clustering.web.infinispan" statistics-enabled="true">
    <local-cache name="default" statistics-enabled="true">
      <object-memory size="10000"/>
      <expiration lifespan="86400000"/>
    <local-cache name="foo" statistics-enabled="true">
      <object-memory size="10000"/>
      <expiration lifespan="600000"/>

The cache manager is injected via CDI resource injection in a Config class as the default cache manager:

class Config {
    @Resource(lookup = "java:jboss/infinispan/container/myapp")
    private EmbeddedCacheManager defaultCacheManager;

The caches are used via the @CacheResult annotation from the JCache API (JSR-107):

class FooService {
    @CacheResult(cacheName = "foo")
    public List<Foo> getFoo(String query) {
        // ...

With this setup the application worked, the service results were cached, but the cache settings from the configuration file were not applied, as could be seen by inspecting the MBeans of the caches via JConsole. Instead the caches used a default configuration with an expiration lifespan of -1 (never), even though they were assigned to the cache container “myapp” as configured.

The solution

One particular answer to a similar problem description on StackOverflow was helpful in finding the solution. Each cache must be injected once via CDI resource lookup as well:

import org.infinispan.Cache;

class Config {
    @Resource(lookup = "java:jboss/infinispan/cache/myapp/foo")
    private Cache<String, Object> fooCache;

    // ...

The format of the JNDI path is:


The property itself will be unused, but the @CacheResult annotation will now use the cache with the correct configuration.

Making the backend of your React App configurable

Nowadays, the frontend and backend of a web application usually are separate parts – oftentimes implemented using different technologies – communicating with each other using HTTP or websockets. For simplicity and smaller deployments they are hostet on the same web server. There are several reasons to deploy them on different servers like load distribution, security, different environments running the same frontend with differing backends and so on.

To allow separate deployments without changing the frontend code per deployment we need to make the backend transparently configurable. Fortunately, this is relatively easy for frontend written in React and set up with create-react-app. To make this fully transparent for your frontend code we need to

  1. Make the backend URL configurable
  2. Replace the fetch() function to use the configured backend
  3. Activate the setup at the start of our app

Configuring a React App

Create-react-app provides a configuration mechanism with custom environment variables using .env-files. We can simply provide different env-files for our environments where we can configure different aspects of our application. In our use case this is the backend URL.

// The base url of the backend API. Add path prefix if the API does not run at the server root.

Inside our React App we can reference the configured values using {process.env.REACT_APP_BACKEND_API_BASE_URL}.

Making the use of our configured backend transparent

In a modern JavaScript app the main mean to communicate with the backend is the fetch()-API. To make the use of our configured backend transparent we can replace the global fetch()-function with our version like so:

// remember the original fetch-function to delegate to
const originalFetch = global.fetch;

export const applyBaseUrlToFetch = (baseUrl) =&gt; {
  // replace the global fetch() with our version where we prefix the given URL with a baseUrl
  global.fetch = (url, options) =&gt; {
    const finalUrl = baseUrl + url;
    return originalFetch(finalUrl, options);

That way all of our fetch() calls are re-routed to the configured backend.

Activating our fetch()-customization

Now that we have all the pieces of our infrastructure in place we need to activate the changes to fetch on application startup. So we add code like below to our index.js:

// If we have a differing backend configured, replace the global fetch()
if (process.env.REACT_APP_BACKEND_API_BASE_URL !== undefined &amp;&amp; process.env.REACT_APP_BACKEND_API_BASE_URL !== '') {

Now all our calls to a relative URL will be prefixed with a configurable base and that way different backends can be used with the same application code.


The above approach works nicely if you have exactly one backend for your app and do not fetch from other sources. If you do, you may want to expose the original fetch function as something like fetchExternal() to be able to explicitly fetch from other sources.

In addition, if frontend and backend reside on different servers/sites using differring DNS-names you will have to configure CORS for your backends or your browser will refuse to make the requests!