Debug Output

Crafting debug output from std::istream data can be dangerous!

Writing a blog post sometimes can be useful to get some face-palm kind of programming error out of one’s system.

Putting such an error into written words then serves a couple of purposes:

  • it helps oneself remembering
  • it helps others who read it not to do the same thing
  • it serves as error log for future reference

So here it comes:

In one project we use JSON to serialize objects in order to send them over HTTP (we use the very nice JSON Spirit library, btw).

For each object we have serialize/deserialize methods which do the heavy lifting. After having developed a new deserialize method I wanted to test it together with the HTTP request handling. Using curl for this I issued a command like this:

curl -X PUT http://localhost:30222/some/url -d @datafile

This command issues a PUT request to the given URL and uses data in ./datafile, which contains the JSON, as request data.

The request came through but the deserializer wouldn’t do its work. WTF? Let’s see what goes on – let’s put some debug output in:

MyObject MyObjectSerializer::deserialize(std::istream& jsonIn)
{
   // debug output starts here
   std::string stringToDeserialize;
   Poco::StreamCopier::copyToString(jsonIn, stringToDeserialize);
   std::cout << "The String: " << stringToDeserialize << std::endl;
   // debug output ends here

   json_spirit::Value value;
   json_spirit::read(jsonIn, value);
   ...
}

I’ll give you some time to spot the bug…. 3..2..1..got it? Please check Poco::StreamCopier documentation if you are not familiar with POCO libraries.
What’s particularly misleading is the “Copier” part of the name StreamCopier, because it does not exactly copy the bytes from the stream into the string – it moves them. This means that after the debug output code, the istream is empty.

Unfortunately, I did not immediately recognize the change in the error outputs of the JSON parser. This might have given me a hint to the real problem. Instead, during the next half hour I searched for errors in the JSON I was sending.

When I finally realized it …

SSL with POCO

A short introduction to using SSL support in POCO C++ libraries.

Admittedly, the topic of this post is very specific but I hope it will still be of some value for some people.The task for today is to setup SSL server and client with POCO framework classes. I will leave out the whole certificate managing issues and just assume that the right files are at hand.

The SSL related part of  the POCO libraries essentially wraps the OpenSSL library into a nice object-oriented interface. When you know OpenSSL, you can instantly relate to classes like Poco::Net::Context, or the …Handler classes (if you replace “handler” with “callback”).

“SSL” stands for Secure Socket Layer, so the first thing to discover is class Poco::Net::SecureServerSocket. As you would expect, this class is derived from Poco::Net::ServerSocket, extending it only with SSL related stuff. And sure enough, some constructors of Poco::Net::ServerSocket take a Poco::Net::ContextPtr as argument.

But why only some constructors? Since there is no setContext method, there must be some other mechanism in place by which SecureServerSockets get their SSL context.

Introducing Poco::Net::SSLManager. From the API docs:

SSLManager is a singleton for holding the default server/client Context and handling callbacks for certificate verification errors and private key passphrases.

Proper initialization of SSLManager is critical.

Aha! So all the constructors of SecureServerSocket that do not take Context pointers simply get it from the SSLManager singleton.

But how to initialize SSLManager?

1. The POCO Way:

If you developed your application with POCO from the ground up there probably exists a sub-class of Poco::Application, and all the configuration is handled by the built-in configuration classes.

With this in place, all you have to do is to add the proper ssl configuration elements:

openSSL.server.privateKeyFile = /path/to/key/file
openSSL.server.certificateFile = /path/to/certificate/file
openSSL.server.verificationMode = none
openSSL.server.verificationDepth = 9
openSSL.server.loadDefaultCAFile = false
openSSL.server.cypherList = ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH
openSSL.server.privateKeyPassphraseHandler.name = KeyFileHandler
openSSL.server.privateKeyPassphraseHandler.options.password = securePassword
openSSL.server.invalidCertificateHandler = AcceptCertificateHandler

2. Manually:

Depending on which side you are – client or server – you have to call SSLManager::initializeClient or  SSLManager::initializeServer. Both methods take three arguments:

  1. PrivateKeyPassphraseHandler pointer
  2. InvalidCertificateHandler pointer
  3. Context pointer

This is where it becomes a little bit tricky: If you try to instantiate a Context with a privateKey file in order to provide it as argument to the initialize… method, a PrivateKeyPassphraseHandler might be needed. This handler is fetched from the SSLManager singleton – which you are just about to initialize!.

This circular dependency between Context and SSLManager can be overcome e.g. if you call SSLManager::initializeServer first only with a PrivateKeyPassphraseHandler, a InvalidCertificateHandler and null Context pointer. Then instantiate the Context and call SSLManager::initializeServer again.

Now that SSL Manager is initialized we can use Secure… prefixed classes as we would used their non-SSL counterparts. As with SecureServerSocket, other Secure… classes are derieved from corresponding non-secure base classes.

Conclusion: Once you got around the initialization of SSLManager singelton, using SSL POCO classes is very easy and straight forward. Check it out!