Non-trivial Custom Data in QActions

If you want to implement dynamic context menus with non-trivial custom data in your QActions, the Qt4 documentation is not very helpful. The article describes some solutions to this task.

Sometimes I get very frustrated with the online Qt4 documentation. Sure, the API docs are massive but for many parts they provide only very basic information. Unfortunately, many Qt books, too, often stop exactly at the point where it gets interesting.

One example for this are context menus. The API docs just show you how menus in general are created and how they are connected to the application: Basically, all menus are instances of QMenu which are filled with instances of QAction. QActions are used as representation of any kind of action than can be triggered from the GUI.

The standard method to connect QActions to the GUI controlling code is to use one of their signals, e.g. triggered(). This signal can be connected to a slot of your own class where you can then execute the corresponding action. This works fine as long as you have a limited set of actions that you all know at coding time. For example, a menu in your tool bar which contains actions Undo/Redo/Cut/Copy/Paste can be created very easily.

But there are use cases where you do not know in advance how many actions there will be in your menus. For example, in an application that provides a GUI for composing a complex data structure you may want to provide the user assisting context menus for adding new data parts depending on what parts already exist. Suddenly, you have to connect many actions to one slot and then you somehow have to know which QAction the user actually clicked.

Btw, let’s all recall the Command Pattern for a moment… ok, now on to some solutions.

Method 0 – QAction::setData: The QAction class provides method setData(), which can be used to store custom data in a QAction instance using QVariant as data wrapper. If you then use QMenu’s triggered signal, which gives you a pointer to the QAction that was clicked, you can extract your data from the QAction. I find this a little bit ugly since you have to wrap your data into QVariant which can get messy, if you want to provide more than one data element

Method 1 – Enhancing QAction::triggered(): By sub-classing QAction you can provide your own triggered() signal which you can enhance with all parameters you need in your slot.

class MyAction : public QAction
{
  Q_OBJECT
  public:
    MyAction(QString someActionInfo)
      : someActionInfo_(someActionInfo)
    {
      connect(this, SIGNAL(triggered()),
              this, SLOT(onTriggered()));
    }
  signals:
    void triggered(QString someActionInfo);
  private slots:
    void onTriggered() {
      emit triggered(someActionInfo_);
    }
  private:
    QString someActionInfo_;
};

This is nice and easy but limited to what data types can be transported via signal/slot parameters.

Method 2 – QSignalMapper: From the Qt4 docs on QSignalMapper:

This class collects a set of parameterless signals, and re-emits them with integer, string or widget parameters corresponding to the object that sent the signal.

… which is basically the same as we did in method 1.

Method 3 – Separate domain specific action classes: By the time the context menu is created you add QActions to the menu using QMenu’s addAction methods. Then you create instances of separate Command-like classes (as in Command Pattern) and connect them with the QAction’s triggered() signal:

// Command-like custom action class. No GUI related stuff here!
class MySpecialAction : public QObject
{
  Q_OBJECT
  public:
    MySpecialAction(QObject* parent, <all necessary parameters to execute>);

  public slots:
    void execute();
  ...
};

// create context menu
QAction* specialAction =
  menu->addAction("Special Action Nr. 1");
MySpecialAction* mySpecialAction =
  new MySpecialAction(specialAction, ...);
connect(specialAction, SIGNAL(triggered()),
        mySpecialAction, SLOT(execute()));

As you can see, QAction specialAction is parent of mySpecialAction, thereby taking ownership of mySpecialAction. This is my preferred approach because it is the most flexible in terms of what custom data can be stored in the command. Furthermore, the part that contains the execution code – MySpecialAction – has nothing at all to do with GUI stuff and can easily be used in other parts of the system, e.g. non-GUI system interfaces.

How have you solved this problem?

Grails pitfall: Proxies and inheritance

When using inheritance in a lazy fetched association, proxies are a common pitfall in Grails.

Problem

You have a domain class hierarchy and want to use the classes in an association. You typically use the base class in a hasMany:

class Domain {
  static hasMany = [others:BaseClass]
}

Dependent on the actual class in the set others you want to call a different method:

public doSomething(domain) {
  domain.others.each {doThis(it)}
}

public doThis(ChildClassOne c) {}

public doThis(ChildClassTwo c) {}
...

Here the proxy mechanism of Hibernate (and Grails) causes a MethodMissingException to be thrown because the proxies are instances of the base class and not the actual child ones.
One way would be to activate eager fetching or you could use…

Solution: A dynamic visitor

Declare a visit method in the base class which takes a closure

def visit(Closure c) {
return c(this)
}

and make the dispatch in a method for the base class:

public doThis(BaseClass c) {
  return c.visit {doThis(it)}
}

The C++ Shoot-yourself-in-the-Foot of the Week

I think we can all agree that C++, compared to other languages, provides quite a number of possibilities to screw up. Everybody working with the language at some point probably had problems with e.g. its exception system, operator overloading or automatic type conversions – to name just a few of the darker corners.

There are also many mitigation strategies which all come down to ban certain aspects of the language and/or define strict code conventions. If you follow Google’s style guide, for example, you cannot use exceptions and you are restricted to a very small set of boost libs.

But developers – being humans – often find creative and surprising ways to thwart every good intentions. In an external project the following conventions are in place:

  • Use const wherever you possibly can
  • Use boost::shared_ptr wherever it makes sense.
  • Define typedefs to shared_ptrs  in order to make code more readable.
  • typedefs to shared_ptrs are to be defined like this:
typedef boost::shared_ptr<MySuperDuperClass> MySuperDuperClassPtr;
  • typedefs to shared const pointers are to be defined like this:
typedef boost::shared_ptr<const MySuperDuperClass> MySuperDuperClassCPtr;

As you can see, postfixes Ptr and CPtr are the markers for normal shared_ptrs and constant shared_ptrs.

Last week, a compile error about some const to non-const conversion made me nearly pull my hair out. The types of variables that were involved all had the CPtr postfix but still the code didn’t compile. After a little digging I found that one of the typedefs involved was like this:

typedef boost::shared_ptr<  MySuperDuperClass> MySuperDuperClassCPtr;

Somebody just deleted the const modifier in front of MySuperDuperClass but left the name with the CPtr untouched. And because non-const to const conversions are allowed this was not detected for a couple of weeks. Nice going!

Any suggestions for a decent style checker for c++? Thanks in advance 😉

There should be a stakeholder for simplicity

You have stakeholders for your product idea, you have stakeholders for your clients and their ideas, you have stakeholders for clean code, for quality, for object oriented programming, … I think we need also stakeholders for simplicity.

Usually in every project ideas are abundant. Your client has many ideas what features he wants. You and your coworkers have a rich background in the problem domain and the technologies you use so that solutions are not sparse. But often this experience and confidence leads to abandoning an important trait: simplicity.
Most of the time you are focused on getting good solutions for the problems that arise. From past experiences with clients who could not exactly explain what they really need (which is different from what they want most of the time) you tend to include a little extra flexibility in your system. Maybe you need this and that variation some time in the future but at this very moment it’s a guess at best. And often this guess costs you. You could argue that you are investing into your project. But how many times did this investment really pay off? And how many times did you have a hard time just because you did not want to make restrictions? At first it seems like a little work. But with the next feature you have to continue supporting your little ‘extra’. Over time it infuses your system like leaven does it with bread. In the end it is more work to make it simple than to keep it simple.
So with every project you approach there should be a stakeholder for simplicity. Someone who focusses on simple solutions. Sometimes you have to cut a bit away from the feature or you have to view the problem from a different angle. Some other time you have to dig deeper into the problem domain or you need real data from your users (which is always better than what you can make up in your mind). Finding simple solutions is work but it is much more work to support your over-engineered solutions.

Improved Version of CMake Builder for Hudson

Introducing version 1.5 of cmake builder plugin for Hudson.

Today I just want to give a small round-up of the improvements made on the cmake builder plugin since my last blog post. Back then, version 1.2 was released to support master/slave configurations. As of yesterday, we are at version 1.5 which contains the following improvements/bug-fixes:

  • Bug: The drop-down box for selecting the build type didn’t remember its value. This was fixed with a patch by Atte Timonen.
  • Improvement: Also included in Atte’s patch was the propagation of environment variables to the cmake command which now allows to do parameterized builds. A big thank’s to Atte!
  • Improvement: The install command gets only executed when install directory and install command is given. Before, the build was either broken or $WORKSPACE was used automatically as install directory. Thanks to Dat Chu for his feedback.
  • Improvement: The one-line ‘Other CMake Arguments’ field can get full pretty quickly, so it was changed to a multi-line text-area.

Thank’s again for the feedback, and have fun with the new version!

Responsibility reduces waste

Most of the waste comes from being irresponsible. Over time waste becomes even harder to remove. So be responsible now.

Recently we participated in a local effort (site in German) to help making our environment cleaner by removing waste which was left by other people. When you take a look at your environment you may come to the conclusion that many people are irresponsible. Waste on the streets and in the parks, prohibition signs everywhere which name things and actions you wouldn’t even think of and when did people forget to flush the toilet?. And it doesn’t stop in the material world, you even find waste in your code. Allowing waste and not removing or preventing it leads to two effects:

  • even more waste (according to the broken window theory)
  • over time the waste becomes more and more intertwined with the environment

Imagine a plastic cup in a forest: When first thrown there it is clearly distinguishable from the mud, the leaves and its surroundings. Easy to see and easy to remove. But over time it is trampled over, crushed, hidden under leaves, wash over with mud, … in the end you may not even spot it when you look at the place where it was left.
The same happens to your code: You start with a small clearly defined part of bad smelly code and leave it alone. Now the first additional features come in, you add code, there and elsewhere. The surroundings change. You refactor. You move code. And in the end the once good known waste is littered all over your code and hard to remove.
So be responsible now! And don’t wait until the waste is hard or impossible to remove. Collective ownership (of code or of your environment) does not mean nobody is repsonsible, it means you are responsible.

Wrestling with Qt’s Model/View API – Filtering in Tree Models

Qt4’s model/view API can be kind of a challenge sometimes. Well, prepare for a even harder fight when sorting and filtering come into play.

As I described in one of my last posts, Qt4’s model/view API can be kind of a challenge sometimes. Well, prepare for a even harder fight when sorting and filtering come into play.

Let’s say you finally managed to get the data into your model and to provide correct implementations of the required methods in order for the attached views to display it properly. One of your next assignments after that is very likely something like implementing some kind of sorting and filtering of the model data. Qt provides a simple-at-first-sight proxy architecture for this with API class QSortFilterProxyModel as main ingredient.

Small preliminary side note: Last time I checked it was good OO practice to have only one responsibility for a given class. And wasn’t that even more important for good API design? Well, let’s not distract us with such minor details.

With my model implementation, none of the standard filtering mechanisms, like setting a filter regexp, were applicable, so I had to override method

QVariant filterAcceptsRow ( int source_row, const QModelIndex& sourceParent ) const

in order to make it work. Well, the rows disappeared as they should, but unfortunately so did all the columns except the first one. So what to do now? One small part of the documentation of QSortFilterProxyModel made me a little uneasy:

“… This simple proxy mechanism may need to be overridden for source models with more complex behavior; for example, if the source model provides a custom hasChildren() implementation you should also provide one in the proxy model.”

What on earth should I do with that? “… may need to be overridden“? “… for example.. hasChildren()…” Why can’t they just say clearly what methods must be overridden in which cases???

After a lot more trial and error I found that for whatever reason,

int columnCount ( const QModelIndex& parent ) const

had to be overridden in order for the columns to reappear. The implementation looks like what I had thought the proxy model would do already:

int MyFilter::columnCount ( const QModelIndex& parent ) const
{
   return sourceModel()->columnCount(parent);
}

So beware of QSortFilterProxyModel! It’s not as easy to use as it looks, and with that kind of fuzzy documentation it is even harder.

Find the bug: Groovy and autogenerated equals

Every program has bugs. Even autogenerated code from IDEs. Can you spot this one?

Take this simple Groovy class:

public class TestClass {
    String s
}

Hitting ‘autogenerate equals and hashCode’ a popular IDE generates the following code:

public class TestClass {

    String s


    boolean equals(o) {
        if (this.is(o)) return true;

        if (!o || getClass() != o.class) return false;

        TestClass testClass = (TestClass) o;

        if (s ? !s.equals(testClass.s) : testClass.s != null) return false;

        return true;
    }

    int hashCode() {
        return (s ? s.hashCode() : 0);
    }
}

At first this looks unusual but ok, but taking a closer look there is a bug in there, can you spot it? And even better: write a test for it?

Lessons learned:

  • If something looks suspicious write a test for it.
  • Question your assumptions. There is no assumption which is safe from be in question.
  • Don’t try to be too clever.

CMake Builder Plugin in Master/Slave Setups

Making the CMake Builder plugin for Hudson behave in master/slave settings.

The first versions of the cmake builder plugin were developed more or less only driven by our own needs. As people began to use it an issue came up that we hadn’t considered yet: distributed builds, a.k.a master/slave mode. So on our first OSLD in 2010 I looked into the plugin and began to rectify the situation.

My test setup consisted of a hudson master on WindowsXP box which was connected via SSH to a slave node in a Ubuntu virtual machine. The first errors were easy to find. The plugin tried to find all configured paths on the windows host and not on the ubuntu slave.

Experience from our previous Crap4J plugin development and a quick read here brought me on the right track. It’s not a good idea to use just java.io.File if you want your plugin to be master/slave capable – use hudson.FilePath instead.

So after replacing all java.io.File occurrences with hudson.FilePath the situation was much better. The plugin handled all paths correctly but still produced errors when calling cmake. I quickly discovered that java.lang.Process and java.lang.ProcessBuilder were used to call “cmake -version”. Again, not a good idea – hudson.Launcher is your friend here.

After replacing Process with Launcher I had only one strange error left. The following launcher call using a nice fluent interface wouldn’t execute on the remote machine but insisted to execute locally.

launcher.launch().cmds(cmakeCall).envs(environmentVars)
   .stdout(listener).pwd(workDir).join();

When I changed it to the seemingly equal statement

launcher.launch(cmakeCall, environmentVars,
    listener.getLogger(), workDir).join();

it worked like a charm.

After all those changes I proudly present the newest version of CMake Builder Plugin which is now ready to be used in distributed environments.

Only one little unpleasantness still exists, though: when configuring the make and install commands the plugin tries to find the executables on the PATH of host machine. For now, you can just ignore the error message. I try to look into it, soon. Apart from that, have fun with the new version.

Don’t let the tools use you

In today’s software development we use many tools to help us doing our job. Many of them are indispensable. But don’t make yourself a slave of the tool.

In today’s software development we use many tools to help us doing our job. Many of them are indispensable. But don’t make yourself a slave of the tool.
When we create schedules based on our estimates we have a great way to communicate how much work we think needs to be done. But don’t let the schedule fool you: you made an estimate based on your knowledge before you began to work. Maybe you need to change the infrastructure, maybe the new change interferes with a past one, in short you gain knowledge on your way. This knowledge can lead you to adapt or even rework your schedule. Your usual approach for accounting unforeseen obstacles might be to include a risk “pad”. Why not use your new gained knowledge to communicate with your client? Maybe a small change to the planned feature is much easier to implement and the client doesn’t even need the extra flexibility. Or the feature is not that important or worth. Don’t try to hold the schedule at all costs. Estimates are a communication tool not a promise we need to fulfill. (related: read also a 37signals post on It’s not a promise it’s a guess)
Or take a look at your favorite editor or IDE: if you happen to use a new language, source code management system or another new tool, the chances are high that your IDE doesn’t support all features or any features at all. You may be tempted to adapt your way to what your IDE supports. If that suits you it’s definitely ok but don’t let the IDE determine how you make use of the features.
When you use software metrics to measure and control the quality of your code you get a lot of numbers and graphs and hints. Use them when you think they benefit you. Don’t just adhere to them, they are a guideline for you, not a law.