The sorry state of Grails (Plugins)

We have been developing and maintaining a complex web application on Grails since summer of 2008. By then Grails had passed the 1.0 release milestone and was really hot. A good 10 years later the application is still in use and we are trying to upgrade from Grails 2.4 to 3.3.

Upgrading Grails – a rough ride

Similar to past upgrade experiences the ride is not very smooth. Besides the major changes like the much welcomed switch to the gradle build system, interceptors instead of filters and streamlined configuration there are again a host of more subtle changes. The biggest problem for us though is the plugin situation.

It’s the plugins

In the past we had tough breaks like the abandoned selenium plugin in favor of the much better geb for functional testing. That had cost us a lot of work and many lost and not yet rewritten functional tests.

This time it seems especially hard because you two of our central plugins are not readily available anymore:

  1. Apache Shiro Plugin
  2. Compass-based Searchable Plugin

1. Shiro authentication

There still is no official release of the shiro plugin for Grails 3.x. After some searching and researching the initial port on github we decided to fork and maintain the most current forked version ourselves and try to work with it. Fortunately it was relatively easy to integrate and to update some dependencies. Our authentication and authorization works at least as good as before and we do not face additional problems. Working with interceptors feels quite good, too.

2. Search

The situation is harder with search. Compass and the searchable plugin are dead – plain and simple. The replacement for grails is the elasticsearch plugin which mostly adopted the API of the searchable plugin. Getting it to work is not that easy though. You have different versions depending on the grails 3 version you are targetting. Each plugin version targets a specific elasticsearch server version and so on. Often times (like in the default configuration) you will need a matching mapper-attachment plugin that is not available on maven in newer versions. This is mentioned somewhere in the midst of the plugin documentation.

Furthermore the plugin itself has some problems with hibernate proxies and concurrency so here we have to mess around with the plugin code once more. Once we have everything working for us like before we will try to get our patches upstream.

Marching forward

The upgrade from 2.x to 3.x is the biggest (and best) step of Grails into the right direction. On the downside it places a lot of burden on the application and plugin developers. That again increases the cost of maintaining proven applications further.

Right now we are close to a Grails 3.3 version of our application but have invested considerable effort into this upgrade.

Our current recommendation and practice is to not start new web applications based on the grails framework because there have been too many breaking changes and the maintainance cost is high. But we are keeping a close look at grails because the increased modularization and and new options like the grails-react-profile may keep grails interesting in the future.

Consistency over magic, please

The Groovy programming language is a JVM based scripting language. It is used by the Grails web framework and the Gradle build automation system.

Groovy has a language feature called Named argument constructors. This means that given a class with properties, for example

class Example {
  String text
}

you can initialize the properties directly when calling the constructor:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

This is basically a shortcut for initializing the properties via explicit assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So far so good.

Enter Grails

We use the aforementioned Grails framework for some of our web application projects. It is advertised on its website as featuring “convention-over-configuration” and “sensible defaults”. Grails uses the Groovy programming language, and a simple domain class looks just like a plain old Groovy class, except that it lives under the grails-app/domain directory (this is one of the convention-over-configuration aspects):

class Example {
  String text
}

As expected, you can initialize the property via regular assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So one might expect that you can initialize it via a named argument constructor call as well:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

And indeed, you can. But what’s this? Our assertion fails:

assert example.text == ' This is an example. '
               |    |
               |    false
               This is an example.

It is not directly obvious from the assertion failure output, but the property value is indeed no longer equal to the expected text: the leading and trailing spaces got trimmed!

I was surprised, but after some research in Grails documentation it turned out that it’s not a bug, but a feature. In the section on Data Binding, you can find the following sentence:

The mass property binding mechanism will by default automatically trim all Strings at binding time. To disable this behavior set the grails.databinding.trimStrings property to false in grails-app/conf/application.groovy.

Groovy’s named argument constructor feature is used as a data binding mechanism by Grails to bind web request parameters to a domain object. For this the default behavior was modified, so that strings are automatically trimmed. I can only guess that this is considered to be an instance of the “sensible defaults” mentioned on the Grails homepage.

To me personally this kind of surprising behavior is not a sensible default, and I think it goes against the Principle of least astonishement. I prefer consistency over “magic”.

Functional tests for Grails with Geb and geckodriver

Previously we had many functional tests using the selenium-rc plugin for Grails. Many were initially recorded using Selenium IDE, then refactored to be more maintainable. These refactorings introduced “driver” objects used to interact with common elements on the pages and runners which improved the API for walking through a multipage process.

Selenium-rc got deprecated quite a while ago and support for Firefox broke every once in a while. Finally we were forced to migrate to the current state-of-the-art in Grails functional testing: Geb.

Generally I can say it is really a major improvement over the old selenium API. The page concept is similar to our own drivers with some nice features:

  • At-Checkers provide a standardized way of checking if we are at the expected page
  • Default and custom per page timeouts using atCheckWaiting
  • Specification of relevant content elements using a JQuery-like syntax and support for CSS-selectors
  • The so-called modules ease the interaction with form elements and the like
  • Much better error messages

While Geb is a real improvement over selenium it comes with some quirks. Here are some advice that may help you in successfully using geb in the context of your (grails) webapplication.

Cross-plattform testing in Grails

Geb (or more specifically the underlying webdriver component) requires a geckodriver-binary to work correctly with Firefox. This binary is naturally platform-dependent. We have a setup with mostly Windows machines for the developers and Linux build slaves and target systems. So we need binaries for all required platforms and have to configure them accordingly. We have simply put them into a folder in our project and added following configuration to the test-environment in Config.groovy:

environments {
  test {
    def basedir = new File(new File('.', 'infrastructure'), 'testing')
    def geckodriver = 'geckodriver'
    if (System.properties['os.name'].toLowerCase().contains('windows')) {
      geckodriver += '.exe'
    }
    System.setProperty('webdriver.gecko.driver', new File(basedir, geckodriver).canonicalPath)
  }
}

Problems with File-Uploads

If you are plagued with file uploads not working it may be a Problem with certain Firefox versions. Even though the fix has landed in Firefox 56 I want to add the workaround if you still experience problems. Add The following to your GebConfig.grooy:

driver = {
  FirefoxProfile profile = new FirefoxProfile()
  // Workaround for issue https://github.com/mozilla/geckodriver/issues/858
  profile.setPreference('dom.file.createInChild', true)
  new FirefoxDriver(profile)
}

Minor drawbacks

While the Geb-DSL is quite readable and allows concise tests the IDE-support is not there. You do not get much code assist when writing the tests and calling functions of the page objects like in our own, code based solution.

Conclusion

After taking the first few hurdles writing new functional tests with Geb really feels good and is a breeze compared to our old selenium tests. Converting them will be a lot work and only happen on a case-by-case basis but our coverage with Geb is ever increasing.

Evolution of programming languages

Programming languages evolve over time. They get new language features and their standard library is extended. Sounds great, doesn’t it? We all know not going forward means your go backward.

But I observe very different approaches looking at several programming ecosystems we are using.

Featuritis

Java and especially C# added more and more “me too” features release after release making relatively lean languages quite complex multi-paradigm languages. They started object oriented and added generics, functional programming features and declarative programming (LINQ in C#) and different UI toolkits (AWT, Swing, JavaFx in Java; Winforms, WPF in C#) to the mix.

Often the new language features add their own set of quirks because they are an afterthought and not carefully enough designed.

For me, this lack of focus makes said language less attractive than more current approaches like Kotlin or Go.

In addition, deprecation often has no effect (see Java) where 20 year old code and style still works which increases the burden further . While it is great from a business perspektive in that your effort to maintain compatibility is low it does not help your code base. Different styles and old ways of doing something tend to remain forever.

Revolution

In Grails (I know, it is not a programming language, but I has its own ecosystem) we see more of a revolution. The core concept as a full stack framework stays the same but significant components are changed quite rapidly. We have seen many changes in technology like jetty to tomcat, ivy to maven, selenium-rc to geb, gant to gradle and the list goes on.

This causes many, sometimes subtle, changes in behaviour that are a real pain when maintaining larger applications over many years.

Framework updates are often a time-consuming hassle but if you can afford it your code base benefits and will eventually become cleaner.

Clean(er) evolution

I really like the evolution in C++. It was relatively slow – many will argue too slow – in the past but it has picked up pace in the last few years. The goal is clearly stated and only features that support it make it in:

  • Make C++ a better language for systems programming and library building
  • Make C++ easier to teach and learn
  • Zero-Cost abstractions
  • better Tool-support

If you cannot make it zero-cost your chances are slim to get your feature in…

C at its core did not change much at all and remained focused on its merits. The upgrades mostly contained convenience features like line comments, additional data type definitions and multithreading.

Honest evolution – breaking backwards compatibility

In Python we have something I would call “honest evolution”. Python 3 introduced some breaking changes with the goal of a cleaner and more consistent language. Python 2 and 3 are incompatible so the distinction in the version number is fair. I like this approach of moving forward as it clearly communicates what is happening and gets rid of the sins in the past.

The downside is that many systems still come with both, a Python 2 and a Python 3 interpreter and accompanying libraries. Fortunately there are some options and tools for your code to mitigate some of the incompatibilities, like the __future__ module and python-six.

At some point in the future (expected in 2020) there will only support for Python 3. So start making the switch.

Getting Shibboleth SSO attributes securely to your application

Accounts and user data are a matter of trust. Single sign-on (SSO) can improve the user experience (UX), convenience and security especially if you are offering several web applications often used by the same user. If you do not want to force your users to big vendors offering SSO like google or facebook or do not trust them you can implement SSO for your offerings with open-source software (OSS) like shibboleth. With shibboleth it may be even feasible to join an existing federation like SWITCH, DFN or InCommon thus enabling logins for thousands of users without creating new accounts and login data.

If you are implementing you SSO with shibboleth you usually have to enable your web applications to deal with shibboleth attributes. Shibboleth attributes are information about the authenticated user provided by the SSO infrastructure, e.g. the apache web server and mod_shib in conjunction with associated identity providers (IDP). In general there are two options for access of these attributes:

  1. HTTP request headers
  2. Request environment variables (not to confuse with system environment variables!)

Using request headers should be avoided as it is less secure and prone to spoofing. Access to the request environment depends on the framework your web application is using.

Shibboleth attributes in Java Servlet-based apps

In Java Servlet-based applications like Grails or Java EE access to the shibboleth attributes is really easy as they are provided as request attributes. So simply calling request.getAttribute("AJP_eppn") will provide you the value of the eppn (“EduPrincipalPersonName”) attribute set by shibboleth if a user is authenticated and the attribute is made available. There are 2 caveats though:

  1. Request attributes are prefixed by default with AJP_ if you are using mod_proxy_ajp to connect apache with your servlet container.
  2. Shibboleth attributes are not contained in request.getAttributeNames()! You have to directly access them knowing their name.

Shibboleth attributes in WSGI-based apps

If you are using a WSGI-compatible python web framework for your application you can get the shibboleth attributes from the wsgi.environ dictionary that is part of the request. In CherryPy for example you can use the following code to obtain the eppn:

eppn = cherrypy.request.wsgi_environ['eppn']

I did not find the name of the WSGI environment dictionary clearly documented in my efforts to make shibboleth work with my CherryPy application but after that everything was a bliss.

Conclusion

Accessing shibboleth attributes in a safe manner is straightforward in web environments like Java servlets and Python WSGI applications. Nevertheless, you have to know the above aspects regarding naming and visibility or you will be puzzled by the behaviour of the shibboleth service provider.

Explicit types – and when to use them

Many modern programming languages offer a way declare variables without an explicit type if the type can be inferred, either dynamically or statically. Many also allow for variables to be explicitly defined with a type. For example, Scala and C# let you omit the explicit variable type via the var keyword, but both also allow defining variables with explicit types. I’m coming from the C++ world, where “auto” is available for this purpose since the relatively recent C++11. However, people are still debating whether you should actually use it.

Pros

Herb Sutter popularised the almost-always-auto style. He advocates that using more type inference is good because it is roughly equivalent to programming against interfaces instead of implementations. He says that “Overcommitting to explicit types makes code less generic and more interdependent, and therefore more brittle and limited.” However, he also mentions that you might sometimes want to use explicit types.

Now what exactly is overcommiting here? When is the right time to use explicit types?

Cons

Opponents to implicit typing, many of them experienced veterans, often state that they want the actual type visible in the source code. They don’t want to rely on type inference being right. They want the code to explicitly state what’s going on.

At first, I figured that was just conservatism in the face of a new “scary” feature that they did not fully understand. After all, IDEs can usually infer the type on-the-fly and you can hover on a variable to let it show you the type.

For C++, the function signature is a natural boundary where you often insert explicit types, unless you want to commit to the compile time and physical dependency cost that comes with templates. Other languages, such as Groovy, do not have this trade-off and let you skip explicit types almost everywhere. After working with Groovy/Grails for a while, where the dominant style seems to be to omit types whereever possible, it dawned on me that the opponents of implicit typing have a point. Not only does the IDE often fail to show me the inferred type (even though it still works way more often than I would have anticipated), but I also found it harder to follow and modify code that did not mention explicit types. Seemingly contrary to Herb Sutter’s argument, that code felt more brittle than I had liked.

Middle-ground

As usual, the truth seems to be somewhere in the middle. I propose the following rule for when to use explicit types:

  • Explicit typing for domain-types
  • Implicit typing everywhere else

Code using types from the problem domain should be as specific as possible. There’s no need for it to be generic – it’s actually counter-productive, as otherwise the code model would be inconsistent with model of the problem domain. This is also the most important aspect to grok when reading code, so it should be explicit. The type is as important as the action on it.

On the other hand, for pure-fabrication types that do not respresent a concept in the domain, the action is important, while the type is merely a means to achieve this action. Typically, most of the elements from a language’s standard library fall into this category. All your containers, iterators, callables. Their types are merely implementation details: an associative container could be an array, or a hash-map or a tree structure. Exchanging it rarely changes the meaning of the code in the problem domain – it just changes its performance characteristics.

Containers will occasionally contain domain-types in their type. What do you do about those? I think they belong in the “everywhere else” catergory, but you should be take extra care to name the contained type when working with it – for example when declaring the variable of the for-each loop on it, or when inserting something into it. This way, the “collection of domain-type” aspect will become clear, but the specific container implementation will stay implicit – like it should.

What do you think? Is this a useful proposition for your code?

Updating from Grails 2.3 to something newer

We are developing, running and maintaining moderately sized Grails web application with > 120 domain classes  since 2008 or Grails 1.0.3. The web application is still in production running on Grails 2.3.8. Just recently we wanted Java 8 support and the usual bugfixes and improvements you get by updating the framework. Since time and budget are very limited (as always…) we decided not to move to 3.x but only to the latest 2.x version. It seemed a safer and easier option and opened up the way to 3.x where many things changed completely.

Trying to go to 2.5.4

The upgrade procedure is generally well documented in Grails. That allowed us to upgrade from 1.0 to 1.3, from 1.3 to 2.2 and finally from 2.2 to 2.3. We skipped 2.0 because of too many problems we faced during the upgrade. As usual the major changes and tasks are mentioned in the upgrade guide. It started smoothly but we finally had to abort the upgrade process because we were bitten by https://github.com/grails/grails-data-mapping/issues/581 . We had not the time to dig fully into it and resolve the issue.

Trying to go to 2.4.5

Many of the changes and improvements and most notably a Groovy version supporting the Java 8 runtime are already available in Grails 2.4.5. So we gave it a shot hoping for fewer problems than with 2.5.4. Actually we got our application running in less than an hour but quite some of our unit, integration and functional tests failed. After finding some advice in http://stackoverflow.com/questions/16532631/grails-unit-test-mock-domain-with-assigned-id we changed our unit tests to use the @Mock() mixin instead of mockDomain() which works in 2.3 and is broken in 2.4.

When trying to fix our integration tests we saw that some of our HQL queries failed. Something was wrong navigating/querying multiple association levels so we finally gave up on this one, too.

Conclusion

Even though we managed to keep our Grails application alive for many years and several framework versions each upgrade carries a significant risk of breakage and requires quite some effort. This time we are stuck again and will have to invest more time to bring the application up-to-date again.

I would advise anyone already using or deciding for Grails as the web framework of choice to start with the latest and greatest release and to budget several person days for upgrades of medium sized projects. The devil is in the details…