Don’t use wrapper

It’s a bad word for a piece of code, and you should feel bad for using it. Here is why:

1. It is easily phonetically confused with “rapper”

Well, this one is actually funny. Really the only redeeming quality. So if someone tells me that they “made a wrapper”, I immediately giggle a bit inside.

2. Wrapping things is a programmers job.

As programmers, we are in the business of abstractions, and a function clearly is an abstraction. A function that calls something else wraps that something else. So isn’t everything a wrapper?
Who would say that the following function is a wrapper?

template <class T>
T multiplication_wrapper(T a, T b)
{
  return a * b;
}

It does wrap the multiplication operator, does it not? Of course, the example is contrived, but many people call equally simple functions “wrapper functions”.

3. It is often a bad analogy

When you wrap something, like a present, you first need to unwrap it to actually use it. So in that case, it acts more like a kind of envelope. This is clearly not the case for what most people call wrappers. You could wrap some data in a .zip file – that would make sense! But no one uses it like that.
Another use of the word wrap implies something that goes around something else, forming a fixture of sorts. Like a wraparound baby sling. So I guess this could work for some uses, like a protection layer. Again, it is not used like that.
Finally, there’s wrapping up something, as in finishing something. Well, maybe if you’re wrapping your main function around the rest of your code, you can finish writing your program. A very monolithic approach.

There are plenty of better alternatives

In most cases, what people should rather use is either facade or adapter. Both names convey a lot more meaning than wrapper. A facade is something that wraps code to make the interface nicer. An adapter wraps an interface to integrate with some other piece of code. Both are structural design patterns. Both wrap something. But then again, that could be said for all of the structural design patterns. Or, most code. Except maybe assembler?

So please, calling something a wrapper is not enough. You might as well just call it function/object/abstraction. Use adapter, facade, decorator, proxy etc.. The why is more important than the what.

Active Object with POCO’s Active Methods

Active Object is a well known design pattern for synchronizing access to an object and/or resource. The basic idea is to separate method invocation from method execution which is done in a dedicated thread.

Instead of using the objects interface directly, a client of an Active Object uses some kind of  proxy which enqueues a so-called Method Request for later execution. The proxy finishes immediately and returns to the client some sort of callback, or variable, by which the client can receive the result. These intermeditate result variables are also known as Futures.

As always, there are lots of ways to implement this pattern. For example, if you had an interface like this

class MyObject
{
  public:
    int doStuff(const std::string& param) =0;
    std::string doSomeOtherThing(int i) =0;
};

applying a straight forward implementation, you would first transform this into a proxy and method request classes:

class MyObjectProxy
{
  public:
    MyObjectProxy(MyObject* theObject);
    // proxy methods
    Future<int> doStuff(const std::string& param);
    Future<std::string> doSomeOtherThing(int i);
  private:
    MyObject * _myObject;
};

class MethodRequest_DoStuff :
  public AbstractMethodRequest
{
  public:
    MethodRequest_DoStuff(const std::string& param);
    // all method request classes must implement execute()
    virtual void execute(MyObject* theObject);

  private:
    const std::string _param;
};

… and so on (for more details see this basic paper by Douglas C. Schmidt, or read chapter Concurrency Patterns in POSA2).

It’s easy to see that this implementation produces a lot of boilerplate code. To solve this, you could either cook up some code generation, or look for some language support to reduce the amount of characters you have to type. In C++, some sort of template solution can be the way to go, or…

Introducing Active Methods

With class ActiveMethod together with support classes ActiveDispatcher and ActiveResult the POCO C++ libraries provide very simple and elegant building blocks for implementing  the Active Object pattern.

ActiveMethod:  this is the core piece. When called, an ActiveMethod executes in its own thread.

ActiveResult: this is what I referred to earlier as a Future. Instances of ActiveResult are used to pass the result of an ActiveMethod call back to the client.

ActiveDispatcher: if you only use ActiveMethods, every ActiveMethod thread can execute in parallel.  With ActiveDispatcher as base class, ActiveMethod calls are serialized, thus implementing real™ Active Object behaviour.

Here my earlier example using ActiveMethods:

class MyObject
{
  public:
    // ActiveMethods are initialized in the ctors
    // initializer list
    MyObject()
      : doStuff(this, &MyObject::doStuffImpl),
        doSomeOtherThing(this, &MyObject::doSomeOtherThingImpl)
    {}

    ActiveMethod<int, std::string, MyObject> doStuff;
    ActiveMethod<std::string, int, MyObject> doSomeOtherThing;
  private:
    int doStuffImpl(const std::string& param);
    std::string doSomeOtherThingImpl(int i);
};

This is used as follows:

MyObject myObject;
ActiveResult<std::string> result = myObject.doSomeOtherThing(42);
...
result.wait();
std::cout << result.data() << std::endl;

This solution requires minimal amounts of additional code to transform your lame and boring normal object into a full-fledged Active Object. The only downside is that Active Methods currently can only have one parameter. If you need more, you have to use tuples or parameter objects.

Have fun!