How building blocks can be a game changer for your project

I have just completed my first own project. In this project I have a web server whose main task is to load files and return them as a stream.
In the first version, there was a static handler for each file type, which loaded the file and sent it as a stream.

As part of a refactoring, I then built building blocks for various tasks and the handler changed fundamentally.

The initial code

Here you can see a part of my web server. It offers a path for both images and audio files. The real server has significantly more handlers and file types.

public class WebServer{
    public static void main(String[] args) {
        var app = Javalin.create()
            .get("api/audio/{root}/{path}/{number}", FileHandler::handleAudio)
            .get("api/img/{root}/{path}/{number}", FileHandler::handleImage)
            .start(7070);
    }
}

Below is a simplified illustration of the handlers. I have also shown the imports of the web server class and the web server technology, in this case Javalin. The imports are not complete. They are only intended to show these two dependencies.

import WebServer;
import io.javalin.http.Context;
// ...

public class FileHandler {

    public static void handleImage(Context ctx) throws IOException {
        var resource = Application.class.getClassLoader().getResourceAsStream(
            String.format(
                "file/%s/%s/%s.jpg", 
                ctx.pathParam("root"), 
                ctx.pathParam("path"), 
                ctx.pathParam("fileName")));
        String mimetyp= "image/jpg";

        if (resource != null) {
            ctx.writeSeekableStream(resource, mimetyp);
        }
    }

    public static void handleAudio(Context ctx) {
        var resource = Application.class.getClassLoader().getResourceAsStream(
            String.format(
                "file/%s/%s/%s.mp3", 
                ctx.pathParam("root"), 
                ctx.pathParam("path"), 
                ctx.pathParam("fileName")));
        String mimetyp= "audio/mp3";

        if (resource == null) {
            resource = Application.class.getClassLoader().getResourceAsStream(
            String.format(
                "file/%s/%s/%s.mp4", 
                ctx.pathParam("root"), 
                ctx.pathParam("path"), 
                ctx.pathParam("fileName")));
            mimetyp= "video/mp4";
        }

        if (resource != null) {
            ctx.writeSeekableStream(resource, mimetyp);
        }
    }
}

The handler methods each load the file and send it to the Javalin context. The audio handler first searches for an audio file and, if this is not available, for a video file. The duplication is easy to see. And with the static handler and Javalin dependencies, the code is not testable.

Refactoring

So first I build an interface, called a decorator, for the context to get the Javalin dependency out of the handlers. A nice bonus: I can manage the handling of not found files centrally. In the web server, I then inject the new WebContext instead of the Context.

public interface WebContext {
    String pathParameter(String key);
    void sendNotFound();
    void sendResourceAs(String type, InputStream resource);
    default void sendResourceAs(String type, Optional<InputStream> resource){
        if(resource.isEmpty()){
            sendNotFound();
            return;
        }
        sendResourceAs(type, resource.get());
    }
}

public class JavalinWebContext implements WebContext {
    private final Context context;

    public JavalinWebContext(Context context){
        this.context = context;
    }

    @Override
    public String pathParameter(String key) {
        return context.pathParam(key);
    }

    @Override
    public void sendNotFound() {
        context.status(HttpStatus.NOT_FOUND);
    }

    @Override
    public void sendResourceAs(String type, InputStream resource) {
        context.writeSeekableStream(resource, type);
    }
}

Then I write a method to load the file and send it as a stream.

private boolean sendResourceFor(String path, String mimetyp, Context context){
    var resource = Application.class.getClassLoader().getResourceAsStream(path);
    if (resource != null) {
        context.sendResourceAs(mimetyp, resource);
        return true;
    }
    return false;
}

The next step is to build a loader for the files, which I pass to the no longer static handler during initialization. Here I can run a quick check to see if anyone is trying to manipulate the specified path.

public class ResourceLoader {
    private final ClassLoader context;

    public ResourceLoader(ClassLoader context){
        this.context = context;
    }

    public Optional<InputStream> asStreamFrom(String path){
        if(path.contains("..")){
            return Optional.empty();
        }
        return Optional.ofNullable(this.context.getResourceAsStream(path));
    }
}

Finally, I build an extra class for the paths. The knowledge of where the files are located and how to determine the path from the context should not be duplicated everywhere.

public class FileCoordinate {
    private static final String FILE_CATEGORY = "file";
    private final String root;
    private final String path;
    private final String fileName;
    private final String extension;

    private FileCoordinate(String root, String path, String fileName, String extension){
        super();
        this.root = root;
        this.path = path;
        this.fileName = fileName;
        this.extension = extension;
    }

    private static FileCoordinate pathFromWebContext(WebContext context, String extension){
        return new FileCoordinate(
                context.pathParameter("root"),
                context.pathParameter("path"),
                context.pathParameter("fileName"),
                extension
        );
    }

    public static FileCoordinate toImageFile(WebContext context){
        return FileCoordinate.pathFromWebContext(context, "jpg");
    }

    public static FileCoordinate toAudioFile(WebContext context){
        return FileCoordinate.pathFromWebContext(context, "mp3");
    }

    public FileCoordinate asToVideoFile(){
        return new FileCoordinate(
                root,
                path,
                fileName,
                "mp4"
        );
    }

    public String asPath(){
        return String.format("%s/%s/%s/%s.%s", FILE_CATEGORY, root, path, fileName, extension);
    }
}

Result

My handler looks like this after refactoring:

public class FileHandler {
    private final ResourceLoader resource;

    public FileHandler(ResourceLoader resource){
        this.resource = resource;
    }

    public void handleImage(WebContext context) {
        var coordinate = FileCoordinate.toImageFile(context);
        sendResourceFor(coordinate, "image/jpg", context);     
    }

    public void handleAudio(WebContext context) {
        var coordinate = FileCoordinate.toAudioFile(context);
        var found = sendResourceFor(coordinate, "audio/mp3", context);
        if(!found)
            sendResourceFor(coordinate.asToVideoFile(), "video/mp4", context);
    }

    private boolean sendResourceFor(FileCoordinate coordinate, String mimetype, WebContext context){
        var stream = resource.asStreamFrom(coordinate);
        context.sendResourceAs(mimetype, stream);
        return stream.isPresent();
    }
}

It is much shorter, easier to read and describes more what is done and not how it is technically done. Another advantage is that I can, for example, fully test my FileCoordinate and mock my WebContext.

For just these two handler methods, it still looks like a overkill. Overall, more code has been created than has disappeared and yes, a smaller modification would probably have been sufficient for this handler alone. But my application is not just this handler and most of them are much more complex. For example, I work a lot with json files, which are loaded and which my loader can now simply interpret using an additional function that return a JsonNode instead a stream. The conversion has significantly reduced the complexity of the application, avoided duplications and made the code more secure and testable.

Data minimization

The European General Data Protection Regulation (GDPR) often refers to the principle of data minimization. But what does this mean, and how can it be applied in practice?

The EU website states the following: “The principle of “data minimisation” means that a data controller should limit the collection of personal information to what is directly relevant and necessary to accomplish a specified purpose. They should also retain the data only for as long as is necessary to fulfil that purpose. In other words, data controllers should collect only the personal data they really need, and should keep it only for as long as they need it.”

But what is necessary? In the following, I will give you an example of how I was able to implement data minimization in a new project.

Verification of training certificates

One of my customers has to train his employees so that they can use certain devices. The training certificates are printed out and kept. So if an employee wants to use the device, the employee has to look for the corresponding certificate at reception, and it cannot be verified whether the printout was really generated by the training system.

Now they wanted us to build an admin area in which the certificates are displayed so that reception can search for it in this area.

The first name, surname, birthday etc. of the employees should be saved with the certificate for a long time.

What does the GDPR say about this?
I need the data so that reception can see and check everything. It is necessary! Or is it not?

Let’s start with the purpose of the request. The customer wants to verify whether an employee has the certificate.

If I want to display a list of all employees in plain text, I need the data. But is this the only solution to achieve the purpose, or can I perhaps find a more data-minimizing option? The purpose says nothing about displaying the names in plain text. A hash comparison, for example, is sufficient for verification, as is usually done with passwords.

So, how do I implement the project? Whenever I issue a certificate, I hash the personal data. In the administration area, there is a dialog in which the recipient can enter the personal data to check whether a valid certificate is available. The data is also hashed, and a hash comparison is used to determine the match.
Instead of an application that juggles a large amount of personal data, my application no longer stores any personal data at all. And the purpose can still be achieved.

Conclusion

Data minimization is therefore not only to be considered in the direct implementation of a function. Data minimization starts with the design.

Walking Skeletons

The time has come. My first own project is starting. But where to start? In the backend, frontend, with the data? Or perhaps with the infrastructure and the delivery pipeline that the current state can always reach the customer? But what should be delivered when I don’t have it yet?

The solution for me was the walking skeleton. The zombie apocalypse may not sound like a good solution at first, but in the following I explain what the term means in software development and what the advantages are.

What is a walking skeleton?

The word walking skeleton can be divided into the components walking and skeleton. Walking means that the software is executable. Skeleton means only a minimalist implementation of the software has been completed and the flesh is still missing. In the case of a first walking skeleton, this means that the backend and frontend have already been set up with the technology of choice and that the components are connected. For example, the backend delivers the frontend.

How to build it? An example.

In my use case, I go one step further and want the walking skeleton to be a Docker container in which the backend and frontend run together.

The first step is to choose the technologies for the frontend and backend. In my case, react with vite and javalin. Then both projects have to be set up. Since my application will be very small, I decided to put the projects inside each other, so that the frontend can be found in the src/main/webapp folder. So I can build them with just one gradle on the top level.

With react, I can already use the example page was created by setup project for my walking skeleton. In Javalin I need a main class which can deliver the htlm page of the react application via a web server. In my code example, the index.html file is automatically delivered if it is stored in the resources/public folder.

import io.javalin.Javalin;
import io.javalin.http.staticfiles.Location;

public class Application {
    public static void main(String[] args) {
        var app = Javalin.create(config -> {
                    config.staticFiles.add("/public", Location.CLASSPATH);
                })
                .start(7070);
    }
}

With some gradle plugins it is possible to build the react app using gradle (com.github.node-gradle.node), pack the java application and all sources into a jar (com.github.johnrengelman.shadow) and create a docker image from it (com.bmuschko.docker-remote-api).

// omitted dependencies, imports and plugins
node {
    version = '20.11.0'
    yarnVersion = '1.22.19'
    distBaseUrl = 'https://nodejs.org/dist'
    download = true
    nodeProjectDir = file('src/main/webapp')
}

tasks.register('bundle', YarnTask) {
    dependsOn yarn
    group = 'build'
    description = 'Build the client bundle'
    args = ['run', 'bundle']
}

tasks.register('webpack', YarnTask) {
    dependsOn yarn
    group = 'build'
    description = 'Build the client bundle in watch mode'
    args = ['run', 'build']
}

tasks.register('jestTest', YarnTask) {
    dependsOn yarn
    group = 'verification'
    description = 'Run the jest tests of our javascript frontends'
    environment = ['CI': 'true']
    ignoreExitValue = true
    args = ['run', 'test']
}

tasks.register('prepareDocker', Copy) {
    dependsOn assemble
    description = 'Copy files from src/main/docker and application jar to Docker temporal build directory'
    group = 'Docker'

    from 'src/main/docker'
    from project.shadowJar

    into dockerBuildDir
}

tasks.register('buildImage', DockerBuildImage) {
    dependsOn prepareDocker
    description = 'Create Docker image to run the Grails application'
    group = 'Docker'

    inputDir = file(dockerBuildDir)
    images.add(dockerTag)
}

Here you can see the snippet from build.gradle, where the tasks for building the project can be seen.

Now my walking skeleton has been brought back to life and can run around the neighborhood cheerfully.

Why this is a good start?

But what is the advantage of letting undead walk?

Once you have completed this step, you can develop the individual parts independently of each other. The walking skeleton is a kickstart for pursuing approaches such as test-driven development. And the delivery pipeline can now also be tackled, as the walking skeleton can be delivered. All in all, the walking skeleton is a way to get started on a project as quickly as possible.

How We Incidentally Increased Our Display Count Up to Five per Workplace

At the beginning of the year 2023, we had the plan to improve our office desk setup in two ways:

  • All desks should be electrically height-adjustable
  • All computers should be attached to the desk and not sitting on the floor

Had we known just how much turbulence this plan brings, we might have reconsidered it. But we finally finalized the project last week, just a few days before the year was over.

This blog entry tries to recap the story of the improvement project and mentions some particular products. We really use those products and are not affiliated with the manufacturers.

Our company has ten desks on two floors. A quick survey revealed that we have five electrically height-adjustable desks already in use. The remaining five desks were not really adjustable. Our plan was to move the five existing desks on one floor and equip the second floor with brand new ones. And because we wanted to achieve the second improvement in the same step, we switched the desk model.

Our new office tables are larger than before (180×80 cm instead of 160×80 cm) and definitely leeter. They are so leet, they are even called LeetDesks. Yes, we exchanged our boring classic office desks with modern pro-gaming desks. Our reasoning is that gaming is hard work, too. The nice thing is that the LeetDesks can be equipped with additional accessories like cable trays, monitor arms and the PC holder that would achieve our second goal.

So we ordered five individually configured gaming desks last year. Deconstructing the existing desks and assembling the new ones was an ongoing task. We bought a new cordless screwdriver after the first table.

When the team began to realize that we are really adjusting our work environment from ground up, new ideas emerged. The idea with the most impact was the change from workstation PC to “notebook desk”. Instead of a dedicated office PC in addition to the mobile work notebook, the office desk should accomodate the notebook in the best possible manner.

Ok, we swapped the PC holder with a notebook holder, no big deal. But how do you connect a notebook with many displays? We bought the only docking station that we could find that can drive three 4k displays over displayport cable: The Icy Box IB-DK2254AC. The fourth display is connected via HDMI directly with the notebook.

Now, the “pandemic setup” of displays is extended by a fifth display on one side: The integrated notebook display can be used to host the e-mails exclusively or show the company chat.

Request for picture requests: I don’t have an action shot of a five-displays workplace right now. But if you are interested how the setup looks like, leave us a comment and we try to supply one later.

Because the distance between displays and computer is now fixed-length and much shorter because the docking station adds its cable length, all the existing cables were too long. We had installed cables with a length of 3 meters to enable full vertical maneuverability. Now we switched back to 2 meters (or even shorter).

Not all of our notebooks were capable of driving that many pixels. Some older models had chipset graphics that gave up after the first external display. So we replaced them with newer models with dedicated notebook graphic cards.

Six of ten desks are now converted to notebook desks, which leaves four desks with PC holders and classic tower PCs. Traditionally, our PCs live in a “normal size” tower case, the Fractal Design Define series. This case is too big and too heavy for the PC holder. So we had to transplant the remaining PCs to a smaller case, the Fractal Design Defince Compact. We transplanted two of them and replaced the other ones a little bit sooner with new computers.

There were even more minor improvements that resulted in additional purchases, but those aren’t directly focussed on a single desk. So let’s recap:

We wanted our desks to be electrically height-adjustable and our floor free of computers. We ended up buying five new desks, six new docking stations, three new notebooks, two new computers, two empty computer cases, a bunch of notebook holders and many, many cables. The amount of cables that is necessary to operate a modern computer desk is astonishing.

We deconstructed, assembled, connected and hauled many days. The project ran the whole length of 2023 and racked up material costs north of 20k EUR.

But now, the floor is unobstructed and our work stance can change from minute to minute. And we increased our display count once more!

Naming table columns in user interface

A few days ago, I had a conversation with a customer regarding naming. They had created a file containing definitions for numerous tables and their corresponding column names for a new user interface. Some names consisted of entire sentences, with words like “from” and “to“.

I found myself dissatisfied with some of these names and thought about why I don’t like them and how to make them nicer.

Guidelines for simplifying names

To me, column names should resemble key points rather than complete sentences. So I’ve compiled a few guidelines that can help you in transforming sentences to key points.

  1. Eliminate filler words: Remove words like verbs and adjectives if they don’t carry relevant information.
  2. Remove articles.
  3. Remove words without additional information. For example, if the information is already included in another word.
  4. Remove information already included in the table name.
  5. Sometimes it makes sense to change the order of the remaining words.

An example

In our example, the table name is “CW 39” and the column name is “The only day of Monday of CW 39 before CW 40“.

1. Remove all filler words: 
The information about there being only one Monday per week is widely known and unnecessary here. Therefore, the new column name is:
The day of Monday of CW 39 before CW 40

2. Remove articles:
The article “The” can be removed. So the new column name is: 
Day of Monday CW 39 before CW 40

3. Remove words without additional information:
The information that it’s about a day is already part of the word ‘Monday’. It’s also obvious, that CW 39 comes before CW 40. So the new column name is: 
Monday CW 39

4. Remove information already included in the table name:
The table name “CW 39” already tells the reader that all columns contain information on this CW. So the new column name is:
Monday

It is much better to read, isn’t it?

Conclusion

After the reformatting, the table became significantly smaller. The names are easier to read, and the understanding is faster as there’s no need to decipher the true meaning within a lengthy sentence.

Thus, it’s a huge advantage to keep the names as short as possible without losing essential information.

JSON Web Token (JWT) and Security

General

JWT is an open standard for transmitting information as a JSON object. The most common scenario is authorization.

Unfortunately, the token keeps cropping up in connection with the security vulnerability. For example, it is mentioned in the OWASP top ten under the item “Broken Access Control”. In the following, I would like to briefly explain the JWT and point out a few risks when using it.

The token consists of three parts: the header, payload, and signature. Each part has been encoded with Base64Url, and all parts are joined together, separated by dots.

The type of the token and the signing algorithm is typically defined in the header.

{
  "alg": "HS256",
  "typ": "JWT"
}

The payload contains the information that should be transmitted. In cases of authorization, the user and permissions. It is also possible to define token metadata, like an expiration time. Such information must be checked by the developer. The token itself has no expiration.

{
  "exp": 1516242622,
  "name": "Max Mustermann",
  "admin": true
}

The signature take the encoded header, the encodes payload and a secret and encode it with the algorithm defined in header.

HMACSHA256(
  base64UrlEncode(header) + "." +
  base64UrlEncode(payload),
  secret)

In the authorization scenario, the token is requested from the client and created by the authorization server. The client uses the token to authorize a resource server. Therefore, the token is sent in the authorization header using the bearer schema.

Security Issues

JWT has a lot of attack surfaces, like the None Hashing Algorithm, ECDSA “Psychic Signatures”, Weak HMAC Keys, HMAC vs Public Key Confusion, Attacker Provided Public Key and the plaintext transmitting of the payload. All in all, JWT is vulnerable to replaying or tampering. Especially if the secret is not strong, the token does not expire, or no signature is used at all.

In the following, I will take a closer look at the none hashing algorithm issue as an example:

JWT allows you to set the algorithm in the header to none. So the signature part that tries to detect tampering is missing. It is just the first two parts and the point of waiting for a signature, which does not come.

eyJhbGciOiAibm9uZSIsICJ0eXAiOiAiSldUIn0K.eyJ1c2VybmFtZSI6ImFkbWluaW5pc3RyYXRvciIsImlzX2FkbWluIjp0cnVlLCJpYXQiOjE1MTYyMzkwMjIsImV4cCI6MTUxNjI0MjYyMn0.

All security precautions are already suspended, and the attacker can create his own tokens or modify intercepted ones at his leisure.

Some frameworks forbid this configuration, but in the JWT standard, it is possible. Although many applications and libraries that use JWT have disabled the option or at least tried to do so, there are still security vulnerabilities due to the configuration option. For example, because only case-sensitive “none”  was checked, settings like “None” or “NoNe” could still be used as an attack surface. So if you want to forbid this setting, it is important to do it case-insensitively.

Since this is a big problem that also occurs again and again, there is a website that counts the days since the last none algorithm problem: https://www.howmanydayssinceajwtalgnonevuln.com/.

The none algorithm is not the only attack surface on the algorithm usage. Most of the before named issues are related to the algorithm part.

How to use most secure

At best, the token should only be used once to confirm authentication and authorization. It should not be used for session management and has a short lifespan. Thus, the time span for attacks can be minimized. Also, the algorithm none option should be prevented, and a proper signature algorithm should be used. Additional information and configuration recommendations can be found under: https://jwt.io/ and OWASP cheatsheet.

Arrow Anti-Pattern

When you write code, it can happen that you nest some ifs or loops inside each other. Here is an example:

Because of the shape of the indentation, this code smell is called an anti-arrow pattern. The deepest indentation depth is the tip of the arrow. In my opinion, such a style is detrimental to readability and comprehension.

In the following, I would like to present a simple way of resolving such arrow anti-patterns.

Extract Method

First we extract the arrow pattern as a new method. This allows us to use return values instead of variable assignments and makes the code clearer.

public string PrintElephantMessage(Animal animal)
{
    Console.WriteLine(IsAElephant(animal));
}
public string IsAElephant(Animal animal)
{
    if (animal.IsMammal())
    {
        if (animal.IsGrey())
        {
            if (animal.IsBig())
            {
                if (animal.LivesOnLand())
                {
                    return "It is an elephant";
                }
                else
                {
                    return "It is not an elephant. Elephants live on land";
                }
            }
            else
            {
                return "It is not an elephant. Elephants are big";
            }
        }
        else
        {
            return "It is not an elephant. Elephants are grey";
        }
    }
    else
    {
        return "It is not an elephant. Elephants are mammals";
    }
}

Turn over ifs

A quick way to eliminate the arrow anti-pattern is to invert the if conditions. This will make the code look like this:

public string IsAElephant(Animal animal)
{
    if (!animal.IsMammal())
    {
        return "It is not an elephant. Elephants are mammals";
    }
    if (!animal.IsGrey())
    {
        return "It is not an elephant. Elephants are grey";
    }
    if (!animal.IsBig())
    {
        return "It is not an elephant. Elephants are big";
    }
    if (!animal.LivesOnLand())
    {
        return "It is not an elephant. Elephants live on land";
    }
    return "It is an elephant";
}

Some IDEs like Visual Studio can help flip the Ifs.

Conclusion

Arrow anti-pattern are code smells and make your code less legible. Fortunately, you can refactor the code with a few simple steps.

How comments get you through a code review

Code comments are a big point of discussion in software development. How and where to use comments. Or should you comment at all? Is the code not enough documentation if it is just written well enough? Here I would like to share my own experience with comments.

In the last months I had some code reviews where colleagues looked over my merge requests and gave me feedback. And it happened again and again that they asked questions why I do this or why I decided to go this way.
Often the decisions had a specific reason, for example because it was a customer requirement, a special case that had to be covered or the technology stack had to be kept small.

That is all metadata that would be tedious and time-consuming for reviewers to gather. And at some point, it is no longer a reviewer, it is a software developer 20 years from now who has to maintain the code and can not ask you questions any more . The same applies if you yourself adjust the code again some time later and can not remember your thoughts months ago. This often happens faster than you think. To highlight how fast details disappear here is a current example: This week I set up a new laptop because the old one had a hardware failure. I did all the steps only half a year ago. But without documentation, I would not have been able to reconstruct everything. And where the documentation was missing or incomplete, I had to invest effort to rediscover the required steps.

Example

Here is an example of such a comment. In the code I want to compare if the mixer volume has changed after the user has made changes in the setup dialog.

var setup = await repository.LoadSetup(token);

var volumeOld = setup.Mixers.Contents.Select(mixer=>mixer.Volume).ToList();

setup = Setup.App.RunAsDialog(setup, configuration);

var volumeNew = setup.Mixers.Contents.Select(mixer=>mixer.Volume).ToList();
if (volumeNew == volumeOld)
{
     break;
}
            
ResizeToMixerVolume(setup, volumeOld);

Why do I save the volume in an additional variable instead of just writing the setup into a new variable in the third line? That would be much easier and more elegant. I change this quickly – and the program is broken.

This little comment would have prevented that and everyone would have understood why this way was chosen at the moment.

// We need to copy the volumes, because the original setup is partially mutated by the Setup App.
var volumeOld = setup.Mixers.Contents.Select(mixer=>mixer.Volume).ToList();

If you annotate such prominent places, where a lot of brain work has gone into, you make the code more comprehensible to everyone, including yourself. This way, a reviewer can understand the code without questions and the code becomes more maintainable in the long run.



Lineendings in repository

Git normally leaves files and their lineendings untouched. However, it is often desired to have uniform line endings in a project. Git provides support for this.

Config Variable

What some may already know is the configuration variable core.autocrlf. With this, a developer can locally specify that his newly created files are checked in to Git with LF. By setting the variable to “true” the files will be converted to CRLF locally by Git on Windows and converted back when saved to the repository. If the variable is set to “input” the files are used locally with the same lineending as in Git without conversion.
The problem is, this normalization only affects new files and each developer must set it locally. If you set core.autocrlf to false, files can still be checked in with not normalized line endings.

Gitattributes File

Another possibility is the .gitattributes file. The big advantage is that the file is checked in similarly to the .gitignore file and the settings therefore apply to all developers. To do this, the .gitattributes file is created in the repository and a path pattern and the text attribute are defined in it. The setting affects how the files are stored locally for the git switch, git checkout and git merge commands and how the files are stored in the repository for git add and git commit.

*.jpg          -text

The text attribute can be unset, then neither check-in nor check-out will do any conversions

*              text=auto

The attribute can also be set to auto. In this case, the line endings will be converted to LF at check-in if Git recognizes the file contents as text. However, if the file is already CRLF in the repository, no conversion takes place and the files remain CRLF. In the example above, the settings are set for all file types.

*.txt         text
*.vcproj      text eol=crlf
*.sh          text eol=lf

If the attribute is set, the lineending are stored in the default repository with LF. But eol can also be used to force fixed line endings for specific file types.

*.ps1	      text working-tree-encoding=UTF-16

Furthermore, settings such as the encoding can be set via the gitattributes file by using working-tree-encoding attribute. Everything else can be read in the documentation of the gitattributes file.

We use this possibility more and more often in our projects. Partly only to set single file types like .sh files to LF or to normalize the whole project.

Forced Acronyms are not that S.M.A.R.T.

A while back, I noticed that quite a lot of people are following that trend to unify a bunch of talking points to a more or less memorizable acronym. Sometimes, this is a great mnemonic device to make the essence of a thing clear in seconds – but for some reason, there are few stories acknowledged in which such attempts actually fail.

However, one of the most prominent acronyms in project management is the idea of S.M.A.R.T. goals. That easily dissolves into S for Specific, M for Measureable, and… hm… T is… something about Time, and then there are A and R, and they very clearly… well well. let’s consult wikipedia… span up a multidimensional vector space out of {Achievable, Attainable, Assignable, Agreed, Action-oriented, Ambitious, Aligned with corporate goals, Realistic, Resourced, Reasonable, Results-based}.

Now this is the point where it’s hard to follow. These are somehow too much possibilities, with no clear assignment. There are probably lots of people out there with their very specific memorization and their very specific interpretation of these letters; and it might very well be true that this forced acronym holds some value. In their specific case.

But why shouldn’t we be honest about it? If you have such a situation, you are not communicating clearly anymore. You have gone beyond that point. There is not a clear, concise meaning anymore.

These are the points where you would be honest to leave your brilliant acronym behind. If you ever sit in a seminar where someone wants to teach you some “easily memorizable acronym” with lots of degrees of freedom, open to interpretation and obviously changing over time, just – complain. Of course, everyone is entitled to using their own memory hook (“Eselsbrücke”) in order to remember whatever his or her goal is. That is not my point.

My Issue is with “official” acronyms that are not clear and constant. We as software developers have a responsibility to treat such inconsistencies as very dangerous and more harmful than helpful. With this post, I want to bring the idea out there that one should rather more often complain about a bad acronym than just think “weeeeell, but I really like how it sounds and I don’t care that it’s somewhat tainted.”

Or am I completely bullheaded in that regard? What is your opinion?

PS: If you are German and remember the beginning of 2021, a similar laziness happened there when our government tried to make their Covid rules clear and well-known. Note that this remark does have nothing to do with politics. Anyway: they invented this acronym of “AHA” (which, in German, is also that sound of having a light bulb appear over your head.) Not that bad of an idea. However, one of that “A”s originally meant “you just need a non-medical mask (Alltagsmaske) everywhere” – until some day, it was changed to “you need a medical face mask in everyday life (im Alltag)”. They just thought it clever to keep the acronym, but change one letter to mean its near opposite.

This is dangerous. Grossly negilent. Just for the sake of liking your old acronym too much, you needlessly fails to communicate clearly. Which is, for a government as much as for a software developer, usually your job.

Naming things 😉