Improved automated instance construction in C++

In my last blog post, I wrote about how I am automatically deducing constructor parameters in my dependency injection container. The approach had a major drawback: It worked only for 2 or more parameters, since there was an ambiguity with copy- or move-constructors with exactly one parameter.

Right after I wrote that post, I actually found a solution to that problem in the Boost.DI FAQ, which explains how to do that in its CPPnow 2016 slides. It restricts the type conversion operator by using SFINEA on an unused template parameter. I did not even know that was possible! It defines the templated conversion operator very similar to this:

template <class T,
  class = std::enable_if_t<!std::is_same<std::remove_cvref_t<T>, Exclude>{}>>
operator T&() const
{
  return p_->get<std::remove_cvref_t<T>>();
}

Since this is a bit more involved than the bare templated conversion operator from last time, repeating it would be bad. In the last version, I used 3 helper types, the inferred_locator, mimic and the provider_wrapper, but that can be streamlined into one class:

template <typename Exclude> struct mimic
{
  mimic(std::size_t)
  {
  }

  mimic(service_provider const& p, std::size_t)
  : p_(&p)
  {
  }

  template <class T, class = std::enable_if_t<!std::is_same<std::remove_cvref_t<T>, Exclude>{}>> operator T&() const
  {
    return p_->get<std::remove_cvref_t<T>>();
  }

  service_provider const* p_{ nullptr };
};

Note that is uses some unused extra size_t parameters, which make the parameter expansion easier in the next step. Now can use that for the SFINEA in the recursive construction:

// Actual dependency injection..
template <class T, std::size_t Head, std::size_t... Rest> constexpr auto
make_injected_(service_provider const& p, std::index_sequence<Head, Rest...>,
    decltype(T{ mimic<T>{ Head }, mimic<T>{ Rest }... }) * = nullptr)
{
  return std::make_unique(mimic<T>(p, Head), mimic<T>(p, Rest)...);
}

// Trivial no-dependency case
template <class T> constexpr auto
make_injected_(service_provider const& p, std::index_sequence<>)
{
  return std::make_unique<T>();
}

// Fallback to try with fewer parameters
template <class T, std::size_t... Rest> constexpr auto make_injected_(service_provider const& p, std::index_sequence<Rest...>)
{
  return make_injected_<T>(p, std::make_index_sequence<sizeof...(Rest) - 1>{});
}

template <class T, std::size_t Max = 16> auto
make_injected(service_provider const& p)
{
  return make_injected_<T>(p, std::make_index_sequence<Max>{});
}

Just after I found this solution, my former colleague Dirk Reinbach sent me a very neat C++20 variant to restrict the conversion operator via a concept:

template <typename T, typename U>
concept not_is_same = !std::is_same_v<std::remove_cvref_t<T>, std::remove_cvref_t<U>>;

template <typename Exclude> struct mimic
{
  /* other members... */
  template <not_is_same<Exclude> T> operator T&() const
  {
    return p_->get<std::remove_cvref_t<T>>();
  }
};

This works just as well, and is more readable, too. I have not measured, but I guess it’s probably also faster to compile, since all things SFINEA are notoriously slow.

Automated instance construction in C++

I’m currently mostly switching back and forth between C# and C++ projects. One of the things that I’m missing most when switching to C++ is a nice dependency-injection (DI) library. After checking out what was already available, I finally decided I wanted to try to build my own slim type-indexed variant. I quickly started by registering factories and instances in a map on std::type_index, making it possible to both have the DI retain ownership (with std::unique_ptr) or just make a type available via a bare pointer. So I was able to do things like:

// Register an instance
di.insert_unique(std::make_unique<foo_service>());
// Register a factory
di.insert_unique([] {return std::make_unique<bar_service>());
// Register an existing bare pointer
di.insert_bare(my_bare_thingy);

// ... and retrieve them
auto& foo = di.get<foo_service>();

One of the most powerful aspects of a DI library is the ability to transitively setup dependencies. I like constructor injection the most, so I implemented a very naive way like this:

di.insert_unique([](auto& p) { return std::make_unique<complex_service>(
  p.get<base_service1>(), p.get<base_service2>(), p.get<base_service3>());
});

This is pretty verbose and we basically have to repeat all the constructor parameter types. But it’s easy to implement. We can do a little bit better by using a templated type-conversion operator and using it to call the get:

class service_provider
{
  struct inferred_locator
  {
    service_provider const* provider;
    template <class T> operator T&() const
    {
      return provider->get<std::remove_const_t<T>>();
    }
  };
  
  inferred_locator get() const
  {
    return { .provider = this };
  }
  
  /** typed get implementations here... */
};

Now we can reduce the previous registration to:

di.insert_unique([](auto& p) { 
  return std::make_unique<complex_service>(p.get(), p.get(), p.get());
});

That is basically only the number of constructor parameters in a verbose way. We could write a small template that takes the number, creates an std::index_sequence from it and then unpacks each index into an invokation of service_provider::get. But then we would still have to update registrations when adding (or removing) a new dependency to a services’s constructor. With a litte more work, we can actually get this instead:

di.insert_unique<complex_service>();

This partly inspired by Antony Polukhin’s C++ reflection talks, and combines std::index_sequence based unpacking, SFINEA and the templated type-conversion operator:

template <class T, std::size_t Head, std::size_t... Rest>
constexpr auto make_unique_impl(provider_wrapper const& p,
    std::index_sequence<Head, Rest...>,
    decltype(T{ mimic{ Head }, mimic{ Rest }... }) * = nullptr) -> std::unique_ptr<T>
{
    // This next requirement is so we do not accidentally recurse into the copy/move-ctors
    static_assert(sizeof...(Rest) + 1 > 1, "Can only deduce constructors with two or more parameters.");
    return std::make_unique<T>(p(Head), p(Rest)...);
}

template <class T, std::size_t... Rest>
constexpr auto make_unique_impl(provider_wrapper const& p, std::index_sequence<Rest...>) -> std::unique_ptr<T>
{
    // This next requirement is so we do not accidentally recurse into the copy/move-ctors
    static_assert(sizeof...(Rest) > 1, "Can only deduce constructors with two or more parameters.");
    return make_unique_impl<T>(p, std::make_index_sequence<sizeof...(Rest) - 1>{});
}

template <class T, std::size_t Max = 8> auto make_unique(service_provider const& p)
{
    return make_unique_impl<T>(provider_wrapper{ &p }, std::make_index_sequence<Max>{});
}

This uses two new types: mimic, which is only used for SFINEA, takes std::size_t on construction (for the unpacking from the std::index_sequence) and converts to anything (templated type conversion again) and the provider_wrapper, which is a simple adaptor around service_provider that takes an unused std::size_t argument (again, for unpacking). The first overload of make_unique_impl is slightly more specialized (because it has Head and Rest), so the compiler tries it first. If it works, it returns a new instance of the service we want. Otherwise, it will fail without an error due to SFINEA in the unused and defaulted third parameter. The compiler will then try the second overload, which will recurse to a variant with fewer parameters. The outermost make_unique starts this recursion with 8 parameters, because that should be enough for any sane service. I stop this recursion at one constructor parameter, even though that is a useful configuration. This is because I have not yet found a way to avoid calling the copy or move constructors accidentally. If anyone knows how to do that, I’d be very happy to hear how. My workaround right now is to explicitly register a factory in that case.

3 good uses for the C++ preprocessor in 2020

As this weird year, 2020, comes to a close, I noticed that I am still using the preprocessor in my C++ programs. And not just for #includes which might, at last, slowly fade away with C++20’s modules. The preprocessor’s got a pretty bad rep, and new C++ programmers are usually taught to stay as far away as possible. Justifiably so – some things, like the dreaded X-Macros really should go the way of the dinosaurs.

But there are still some good uses left in the thing, and here’s my top 3 of those:

0. Commenting out big-chunks of code

I’ve often seen people comment out big parts of code with block comments: /* this is not active */. However, that will only work as long as the code does not contain any other block comments, let alone a stray */ in a string. A great alternative is to use the preprocessor:

#if 0
auto i_do_not_want_to_compile_this() -> auto
{
  std::vector<std::deque<std::mutex>> baz{};
  return baz;
}
#endif

This can easiely by wrapped multiple times around bigger parts of code, which is very helpful when refactoring large chunks of legacy code. It can very easiely be toggled on and off while in this state. And the IDE will usually still show a dimmed version of syntax highlighting in the disabled region.

1. Conditionally throw away “cross-cutting” concerns

Some parts of aspects of programs can be “cross-cutting”, which means they cannot easiely be separated from the rest of the code-base by putting them in a separate module. The most prominent example is probably logging. While you can typically modularize the actual implementation, the actual log calls will be all over your code. Another of those concerns is “profiling”. This is also something that you typically want to take out of your application when deploying it, because users will rarely profile the end-product. Again, the preprocessor comes to the rescue. For example, in the excellent Optick, most of the code you insert is actually macros that can be completely eliminated with a simple compile-time switch. Consider this “tag” that add some additional metric to your profile:

OPTICK_TAG("CoolMetric", compute_cool_metric());

When Optick is turned off via the aforementioned compile-time switch, compute_cool_metric() is never called. The call is not even compiled. Just turning Optick off will completely remove it from your source. Now this can be potentially dangerous, if the function has a side effect, but you wouldn’t do that anyways, would you?

2. Making forward declarations more visible

Presumably owing to its history as a continuously-evolved language, C++ has a very limited set of reserved keywords, often avoiding to introduce keywords to not interfere with any working software out there. Do not get me wrong, that is a great reason. But because of this, some language constructs can sometimes be a bit cryptic, for example forward declarations: class will_be_defined;. If you ever worked with a big, old or big and old code-base with lots of those, you probably know that maintaining them can be a bit of a chore and prone to error. So I think it is a great idea to at least make them more visible with your own macro “KEYWORD”:

#define FORWARD_DECL(x) class x

FORWARD_DECL(will_be_defined);

That FORWARD_DECL immediatly stands out visually and helps me keep track of those subtle declarations.

std::initializer_list considered evil

I am so disappointed in you, std::initializer_list. You are just not what I thought you were.

Lights out

While on the train to Meeting C++ this year, I was working on the lighting subsystem of the 3D renderer for my game abstractanks. Everything was looking fine, until I switched to the release build. Suddenly, my sun light went out. All the smaller lights were still there, it just looked like night instead of day.
Now stuff working in Debug and not working in Release used to be quite common and happens when you’re not correctly initializing built-in variables. So I went digging, but it was not as easy as I had thought. Several hours later, I tracked the problem down to my global light’s uniform buffer initialization code. This is a buffer that is sent to the GPU so the shaders can read all the lighting information. It looked like a fairly innocent for-loop doing byte-copies of matrices and vectors to a buffer:

using Pair = std::pair;
auto Mapping = std::initializer_list{
  {ShadowMatrix.ptr(), MATRIX_BYTE_SIZE},
  {LightDirection.ptr(), VECTOR4_BYTE_SIZE},
  {ColorAndAmbient.ptr(), VECTOR4_BYTE_SIZE}
};

std::size_t Offset = 0;
for (auto const& Each : Mapping)
{
  mUniformBuffer.SetSubData(GL_UNIFORM_BUFFER, Each.second, Offset, Each.first);
  Offset += Each.second;
}

The Culprit

After mistakenly blaming alignment issues for a while, I finally tried looking at the values of Each.second and Each.first. To my surprise, they were bogus. Now what is going on there? It turns out not writing this in almost-always-auto style, i.e. using direct- instead of copy-initialization fixes the problem, so there’s definitely a lifetime issue here.

Looking at the docs, it became apparent that std::initializer_list is indeed a reference-type that automatically creates a value-type (the backing array) internally and keeps it alive exactly as binding a reference to that array would. For the common cases, i.e. when std::initializer_list is used as a parameter, this is fine, because the original list lives for the whole function-call expression. For the direct-initialization case, this is also fine, since the reference-like lifetime-extension kicks in. But for copy-initialization, the right-hand-side is done after the std::initializer_list is copied. So the backing array is destroyed. Oops.

Conclusion and alternatives

Do not use std::initializer_list unless as a function parameter. It works well for that, and is surprising for everything else. In my case, a naive “extract variable” refactoring of for (auto const& each : {a, b, c}) { /* ... */ } led me down this rabbit hole.
My current alternative is stupidly simple: a built-in array on the stack:

using Pair = std::pair;
Pair Mapping[]{
  {ShadowMatrix.ptr(), MATRIX_BYTE_SIZE},
  {LightDirection.ptr(), VECTOR4_BYTE_SIZE},
  {ColorAndAmbient.ptr(), VECTOR4_BYTE_SIZE}
};

It does the same thing as the “correct” version of the std::initializer_list, and if you try to use it AAA-style, at least clang will give you this nice warning: warning: temporary whose address is used as value of local variable 'Mapping' will be destroyed at the end of the full-expression [-Wdangling]

Integrating conan, CMake and Jenkins

In my last posts on conan, I explained how to start migrating your project to use a few simple conan libraries and then how to integrate a somewhat more complicated library with custom build steps.

Of course, you still want your library in CI. We previously advocated simply adding some dependencies to your source tree, but in other cases, we provisioned our build-systems with the right libraries on a system-level (alternatively, using docker). Now using conan, this is all totally different – we want to avoid setting up too many dependencies on our build-system. The fewer dependencies they have, the less likely they will accidentally be used during compilation. This is crucial to implement portability of your artifacts.

Setting up the build-systems

The build systems still have to be provisioned. You will at least need conan and your compiler-suite installed. Whether to install CMake is a point of contention – since the CMake-Plugin for Jenkins can do that.

Setting up the build job

The first thing you usually need is to configure your remotes properly. One way to do this is to use conan config install command, which can synchronize remotes (or the whole of the conan config) from either a folder, a zip file or a git repository. Since I like to have stuff readable in plain text in my repository, I opt to store my remotes in a specific folder. Create a new folder in your repository. I use ci/conan_config in this example. In it, place a remotes.txt like this:

bincrafters https://api.bintray.com/conan/bincrafters/public-conan True
conan-center https://conan.bintray.com True

Note that conan needs a whole folder, you cannot read just this file. Your first command should then be to install these remotes:

conan config install ci/conan_config

Jenkins’ CMake for conan

The next step prepares for installing our dependencies. Depending on whether you’re building some of those dependencies (the --build option), you might want to have CMake available for conan to call. This is a problem when using the Jenkins CMake Plugin, because that only gives you cmake for its specific build steps, while conan simply uses the cmake executable by default. If you’re provisioning your build-systems with conan or not building any dependencies, you can skip this step.
One way to give conan access to the Jenkins CMake installation is to run a small CMake script via a “CMake/CPack/CTest execution” step and have it configure conan appropriatly. Create a file ci/configure_for_conan.cmake:

execute_process(COMMAND conan config set general.conan_cmake_program=\"${CMAKE_COMMAND}\")

Create a new “CMake/CPack/CTest execution” step with tool “CMake” and arguments “-P ci/configure_for_conan.cmake”. This will setup conan with the given cmake installation.

Install dependencies and build

Next run the conan install command:

mkdir build && cd build
conan install .. --build missing

After that, you’re ready to invoke cmake and the build tool with an additional “CMake Build” step. The build should now be up and running. But who am I kidding, the build is always red on first try ūüėČ

Migrating an existing C++ codebase to conan

This is a bit of a battle report of migrating the dependencies in my C++ projects to use the conan package manager.
In the past weeks I have started to use conan in half a dozen both work and personal projects. Here’s my experiences so far.

Before

The first real project I started with was my personal game project. The “before” setup used a mixture if techniques to handle dependencies and uses CMake to do most of the heavy lifting.
Most dependencies reside in the “devenv”, which is a separate CMake project that I use to build and bundle the dependencies in a specific installation folder. It uses ExternalProject_Add for most parts (e.g. Boost, SDL, Lua, curl and OpenSSL), add_subdirectory for a few others (pugixml and lz4) and just install(FILES...) for a few header only libs like JSON for Modern C++, Catch2 and spdlog. It should be noted that there are relatively few interdependencies between the projects in there.
Because it is more convenient to update, I keep a few dependencies that I control myself directly in the source tree, either as git externals or just copies of the source files.
I try to keep usage of system dependencies to a minimum so that the resulting binary is more portable to the average gamer who does not want to know about libraries and dependencies and such nonsense. This setup has been has been mostly painless and working for my three platforms Windows, Linux and Mac – at least as long as I did not try to change it significantly.

Baby steps

Since not all my dependencies are available on conan and small iterations are usually more successful, I decided to proceed by changing only a single dependency to conan. For this dependency, it’s a good idea to pick something that does not have many compile-time options and is more or less platform agnostic. So I opted for boost over, e.g. SDL or wxWidgets. Boost was also one of the most painful dependencies to build, if only for the insane amount of files it produces and the time it takes to copy those ten-thousands of files to the install location.

Getting started..

There are currently two popular variants of boost available through conan. The “normal” variant on conan’s main repository/remote “conan-center” and a modular version that splits boost into its component libraries on the bincrafters remote, e.g. Boost.Filesystem. The modular version is more appealing conceptually, and I also had a better time getting it to work in my first tests, so I picked that. I did a quick grep for #include <boost/ through my code for an initial guess which boost libraries I needed to get and created a corresponding conanfile.txt in my project root.

[requires]
boost_filesystem/1.69.0@bincrafters/stable
boost_math/1.69.0@bincrafters/stable
boost_random/1.69.0@bincrafters/stable
boost_property_tree/1.69.0@bincrafters/stable
boost_assign/1.69.0@bincrafters/stable
boost_heap/1.69.0@bincrafters/stable
boost_optional/1.69.0@bincrafters/stable
boost_program_options/1.69.0@bincrafters/stable
boost_iostreams/1.69.0@bincrafters/stable
boost_system/1.69.0@bincrafters/stable

[options]
boost:shared=False

[generators]
cmake

Now conan plays really nice with “single configuration generators” like the new CMake/Ninja support in VS2017 and onward. Basically, just cd into your build dir and call something like conan install -s build_type=Debug -s build_type=x86 whenever you want to update dependencies. More info can be found in the official documentation. The workflow for CLion is essentially the same.

Using it in your build

After the last command, conan will download (or build) the dependencies and generate a file with all the corresponding paths.
To use it, include it from cmake like this:

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS KEEP_RPATHS)

It will then provide targets for all the requested boost libraries that you can link to like this:

target_link_libraries(myTarget
  PUBLIC CONAN_PKG::boost_filesystem
)

I wanted to make sure that the compiler build using the new boost files and not the old ones. Because I have a generic include into my devenv that was still going to be in my compilers include-paths for all the other dependencies, so I just renamed boost’s header include folder on disc. After my first successful compile I felt confident enough to delete them.

First problems

There was one major problem: some of my in-source dependencies had their own claim on using boost via passed CMake variables, Boost_LIBRARY_DIRS and Boost_INCLUDE_DIR. I adapted their CMakeLists.txt to allow for injecting appropriate targets instead. Not the cleanest solution, but it got my builds green again fast.

There’s a still a lot to cover on this: The other platforms had their own quirks and I migrated way more than just this first project. Also, there is still ways to go for a full migration with my game project. But more on that in my next blog post…