Using Docker Containers in Development with WebStorm: Next Iteration

We are always in pursue of improving our build and development infrastructures. Who isn’t?

At Softwareschneiderei, we have about five times as many projects than we have developers (without being overworked, by the way) and each of that comes with its own requirements, so it is important to be able to switch between different projects as easily as cloning a git repository, avoiding meticulous configuration of your development machines that might break on any change.

This is the main advantage of the development container (DevContainer) approach (with Docker being the major contestant at the moment), and last November, I tried to outline my then-current understanding of integrating such an approach with the JetBrains IDEs. E.g. for WebStorm, there is some kind of support for dockerized run configurations, but that does some weird stuff (see below), and JetBrains did not care enough yet to make that configurable, or at least to communicate the sense behind that.

Preparing our Dev Container

In our projects, we usually have at least two Docker build stages:

  • one to prepare the build platform (this will be used for the DevContainer)
  • one to execute the build itself (only this stage copies actual sources)

There might be more (e.g. for running the build in production, or for further dependencies), but the basic distinction above helps us to speed up the development process already. (Further reading: Docker cache management)

For one of our current React projects (in which I chose to try Vite in favor of the outdated Create-React-App, see also here), the Dockerfile might look like

# --------------------------------------------
FROM node:18-bullseye AS build-platform

WORKDIR /opt
COPY package.json .
COPY package-lock.json .

# see comment below
RUN npm install -g vite

RUN npm ci --ignore-scripts
WORKDIR /opt/project

# --------------------------------------------
FROM build-platform AS build-stage

RUN mkdir -p /build/result
COPY . .
CMD npm run build && mv dist /build/result/app

The “build platform” stage can then be used as our Dev Container, from the command line as (assuming, this Dockerfile resides inside your project directory where also src/ etc. are chilling)

docker build -t build-platform-image --target build-platform .
docker run --rm -v ${PWD}:/opt/project <command_for_starting_dev_server>

Some comments:

  • The RUN step to npm install -g vite is required for a Vite project because the our chosen base image node:18-bullseye does not know about the vite binaries. One could improve that by adding another step beforehand, only preparing a vite+node base image and taking advantage of Docker caching from then on.
  • We specifically have to take the WORKDIR /opt/project because our mission statement is to integrate the whole thing with WebStorm. If you are not interested in that, that path is for you to choose.

Now, if we are not working against any idiosyncrasies of an IDE, the preparation step “npm ci” gives us all our node dependencies in the current directory inside a node_modules/ folder. Because this blog post is going somewhere, already now we chose to place that node_modules in the parent folder of the actual WORKDIR. This will work because for lack of an own node_modules, node will find it above (this fact might change with future Node versions, but for now it holds true).

The Challenge with JetBrains

Now, the current JetBrains IDEs allow you to run your project with the node interpreter (containerized within the node-platform image) in the “Run/Debug Configurations” window via

“+” ➔ “npm” ➔ Node interpreter “Add…” ➔ “Add Remote” ➔ “Docker”

then choose the right image (e.g. build-platform-image:latest).

Now enters that strange IDE behaviour that is not really documented or changeable anywhere. If you run this configuration, your current project directory is going to be mounted in two places inside the container:

  • /opt/project
  • /tmp/<temporary UUID>

This mounting behaviour explains why we cannot install our node_modules dependencies inside the container in the /opt/project path – mounting external folders always override anything that might exist in the corresponding mount points, e.g. any /opt/project/node_modules will be overwritten by force.

As we cared about that by using the /opt parent folder for the node_modules installation, and we set the WORKDIR to be /opt/project one could think that now we can just call the development server (written as <command_for_starting_dev_server> above).

But we couldn’t!

For reasons that made us question our reality way longer than it made us happy, it turned out that the IDE somehow always chose the /tmp/<uuid> path as WORKDIR. We found no way of changing that. JetBrains doesn’t tell us anything about it. the “docker run -w / --workdir” parameter did not help. We really had to use that less-than-optimal hack to modify the package.json “scripts” options, by

 "scripts": {
    "dev": "vite serve",
    "dev-docker": "cd /opt/project && vite serve",
    ...
  },

The “dev” line was there already (if you use create-react-app or something else , this calls that something else accordingly). We added another script with an explicit “cd /opt/project“. One can then select that script in the new Run Configuration from above and now that really works.

We do not like this way because doing so, one couples a bad IDE behaviour with hard coded paths inside our source files – but at least we separate it enough from our other code that it doesn’t destroy anything – e.g. in principle, you could still run this thing with npm locally (after running “npm install” on your machine etc.)

Side note: Dealing with the “@esbuild/linux-x64” error

The internet has not widely adopteds Vite as a scaffolding / build tool for React projects yet and one of the problems on our way was a nasty error of the likes

Error: The package "esbuild-linux-64" could not be found, and is needed by esbuild

We found the best solution for that problem was to add the following to the package.json:

"optionalDependencies": {
    "@esbuild/linux-x64": "0.17.6"
}

… using the “optionalDependencies” rather than the other dependency entries because this way, we still allow the local installation on a Windows machine. If the dependency was not optional, npm install would just throw an wrong-OS-error.

(Note that as a rule, we do not like the default usage of SemVer ^ or ~ inside the package.json – we rather pin every dependency, and do our updates specifically when we know we are paying attention. That makes us less vulnerable to sudden npm-hacks or sneaky surprises in general.)

I hope, all this information might be useful to you. It took us a considerable amount of thought and research to come to this conclusion, so if you have any further tips or insights, I’d be glad to hear from you!

Using custom Docker containers for development with WebStorm & Co.

Docker has become one of the go-to tools of many developers these days. Not because any project should implement as many technological buzz words per se, but due to their great deal of flexibility compared with their small hassle of setup.

For stuff like node-based applications, using a Dev Container is useful because in principle, you do not need to have any of the npm stuff on your actual machine – not only you avoid having these monstrous node_modules folders, but also avoid having accidental dependencies on some specific configuration that might hold true on your device, but not generally.

For some of these reasons probably, JetBrains included Docker Dev Containers as a kind of “remote” development. In a sense, a docker container can be thought of as a remote machine, regardless of the fact that it shares your local hardware and is just a software abstraction.

In my opinion, JetBrains usually does great software, but there is some weird behaviour in their usage of Docker Dev Containers and it took us a while to find a quite general and IDE-independent solution; I’ll just use WebStorm as an example of something that appeared unusually hard to tame. I guess it will become better eventually.

For now, one might think of using the built-in config like:

  1. New Run Configuration -> npm
  2. Node Interpreter: “…”
  3. “+” -> Add Remote… -> “Docker”
  4. Use an image of your choice, either one of the node base images or a custom one (see below) with its corresponding tag

Now for reasons that seem to be completely undocumented and unavoidable (tell me if you know more!), the IDE forces you to then mount your project to /opt/project inside this container, where it gets mirrored during runtime to somewhere /tmp/<temporary uuid>/ – and in several of our projects (due to our folder structure which is not even particularly abnormal) this made this option to be completely unusable.

The way one can work without these strange idiosyncrasies is as follows:

First, create a Dockerfile in which you do all the required setup. It might be an optional idea to set the user, away from “root” to something more restricted like “node” (even though in development, you probably have your eyes on everything nevertheless). You can do more custom setup here. This can look like

FROM node:16.18.0-bullseye-slim

WORKDIR /your-home-inside-container
RUN chown node .

COPY package.json package-lock.json /your-home-inside-container

USER node

RUN npm ci --ignore-scripts

# COPY <whatever you might want> <where you want it inside>

EXPOSE 3000

CMD npm start

From that Dockerfile, build a local image in the same folder like:

# you might need -f if the Dockerfile is not named "Dockerfile"
docker build -t your-dev-image .

Then, create a new Run Configuration but choose “Shell script” (not npm)

docker run -it --rm --entrypoint= -v ${PWD}/src:/your-home-inside-container/src -p 0.0.0.0:3000:3000 your-dev-image

You might use a different “-p” port forwarding if you do not want to have your development server broadcasting on port 3000 (another advantage of Dev Containers, you can easily run multiple instances on different ports).

This is about the whole magic. But there are two further things that could be important here:

Hot Reloading (live updating whenever source files change)

This is done rather easily, however seems to change once in a while. We figured out that at least if you are using react-scripts@5.0.1 (which is what “npm start” addresses, unless you do that differently), you just need to set the environment variable “WATCHPACK_POLLING=true”. I.e put that in your Dockerfile a

ENV WATCHPACK_POLLING true

or pass it into your docker run ... -e WATCHPACK_POLLING=true ... your-dev-image line

Routing a development proxy to some “local host”

If your software e.g. adresses a backend that is running on your development machine or another Docker Dev Container, it can not just access that host from inside the Docker container. Neither is the port forwarding via “-p …:…” of any use, because that addresses the other direction – i.e. what port from the container is exposed to outside access – here, we go the other direction.

When the software inside the container would actually want to address “localhost”, it needs to be directed at the host under which your local machine appears. Docker has a special hostname for that and it is host.docker.internal

I.e. if your local backend is running on “localhost:8080” on your machine, you need to tell your Dev Container to direct its requests to “host.docker.internal:8080”.

In one of our projects, we needed some specific control over the proxy that the React development server gives you and here is way to gain that control – add a “setupProxy.js” inside your src/ folder and put in it something like

const { createProxyMiddleware } = require('http-proxy-middleware');

module.exports = function(app) {
    if (process.env.LOCAL_DEVELOPMENT) {
        return;
    }

    let httpProxyMiddleware = createProxyMiddleware({
        target: process.env.REACT_APP_PROXY || 'http://localhost:8080',
        changeOrigin: true,
    });
    app.use('/api', httpProxyMiddleware); // change to your needs accordingly
};

This way, one can always change the address via setting a REACT_APP_PROXY environment variable as in the step above; and one can also disable the whole proxying by setting the LOCAL_DEVELOPMENT env variable to true. Name these as you like, and you can even extend this setupProxy to include web sockets or different proxies for different routes, if you have any questions on that, just comment below 🙂

The layer cake approach: Docker multi-stage builds and Dev containers

One recent feature that has the ability to change the way developers work on their local machines are dev containers. In short, a dev container is a docker container that provides a working environment for a specific project and can be used by the IDE to develop the project without ever installing anything on the developer machine except the IDE, docker and git. It is especially interesting if you switch between projects with different ecosystems or the same ecosystem in different version often.

Most modern IDEs support dev containers, even if it still feels a bit unpolished in some implementations. In my opinion, the advantages of dev containers outweigh the additional complexity. The main advantage is the guarantee that all development systems are set up correctly and in sync. Our instructions to set up projects shrank from a lengthy wiki page to four bullet points that are essentially the same process for all projects.

But one question needs to be answered: If you have a docker-based build and perhaps even a docker-based delivery and operation, how do you keep their Dockerfiles in sync with your dev container Dockerfile?

My answer is to not split the project’s Dockerfiles, but layer them in one file as a multi-stage build. Let’s view the (rather simple) Dockerfile of one small project:

# --------------------------------------------
FROM python:3.10-alpine AS project-python-platform

COPY requirements.txt requirements.txt
RUN pip3 install --upgrade pip
RUN pip3 install --no-cache-dir -r requirements.txt

# --------------------------------------------
FROM project-python-platform AS project-application

WORKDIR /app

# ----------------------
# Environment
# ----------------------
ENV FLASK_APP=app
# ----------------------

COPY . .

CMD python -u app.py

The interesting part is introduced by the horizontal dividers: The Dockerfile is separated into two parts, the first one called “project-python-platform” and the second one “project-application”.

The first build target contains everything that is needed to form the development environment (python and the project’s requirements). If you build an image from just the first build target, you get your dev container’s image:

docker build --pull --target project-python-platform -t dev-container .

The second build target uses the dev container image as a starting point and includes the project artifacts to provide an operations image. You can push this image into production and be sure that your development effort and your production experience are based on the same platform.

If you frowned because of the “COPY . .” line, we make use of the .dockerignore feature for small projects.

Combining multi-stage builds with dev containers keeps all stages of your delivery pipeline in sync, even the zeroth stage – the developer’s machine.

But what if you have a more complex scenario than just a python project? Let’s look at the Dockerfile of a python project with a included javascript/node/react sub-project:

# --------------------------------------------
FROM python:3.9-alpine AS chronos-python-platform

COPY requirements.txt requirements.txt

RUN pip3 install --upgrade pip
RUN pip3 install --no-cache-dir -r requirements.txt

# --------------------------------------------
FROM node:16-bullseye AS chronos-node-platform

COPY chronos_client/package.json .
COPY chronos_client/package-lock.json .

RUN npm -v
RUN npm ci --ignore-scripts

# --------------------------------------------
FROM chronos-node-platform AS chronos-react-builder

COPY chronos_client .

# build the client javascript application
RUN npm run build

# --------------------------------------------
FROM chronos-python-platform AS chronos-application

WORKDIR /app

COPY . .

# set environment variables
ENV ZEITGEIST_PASSWORT=''

COPY --from=chronos-react-builder /build ./chronos_client/build

CMD python -u chronos.py

It is the same approach, just more layers on the cake, four in this example. There is one small caveat: If you want to build the “chronos-node-platform”, the preceding “chronos-python-platform” gets built, too. That delays things a bit, but only once in a while.

The second to last line might be interesting if you aren’t familiar with multi-stage builds: The copy command takes compiled files from the third stage/layer and puts them in the final layer that is the operations image. This ensures that the compiler is left behind in the delivery pipeline and only the artifacts are published.

I’m sure that this layer cake approach is not feasible for all project setups. It works for us for small and medium projects without too much polyglot complexity. The best aspect is that it separates project-specific knowledge from approach knowledge. The project-specific things get encoded in the Dockerfile, the approach knowledge is the same for all projects and gets documented in the Wiki – once.