Client-side web development: Drink the Kool-Aid or be cautious?

Client side web development is a fast-changing world. JavaScript libraries and frameworks come and go monthly. A couple of years ago jQuery was a huge thing, then AngularJS, and nowadays people use React or Vue.js with a state container like Redux. And so do we for new projects. Unfortunately, these modern client-side frameworks are based on the npm ecosystem, which is notoriously known for its dependency bloat. Even if you only have a couple of direct dependencies the package manager lock file will list hundreds of indirect dependencies. Experience has shown that lots of dependencies will result in a maintenance burden as time passes, especially when you have to do major version updates. Also, as mentioned above, frameworks come and then go out of fashion, and the maintainers of a framework move on to their next big thing pet project, leaving you and your project sitting on a barely or no longer maintained base, and frameworks can’t be easily replaced, because they tend to permeate every aspect of your application.

With this frustrating experience in mind we recently did an experiment for a new medium sized web project. We avoided frameworks and the npm ecosystem and only used JavaScript libraries with no or very few indirect dependencies, which really were necessary. Browsers have become better at being compatible to web standards, at least regarding the basics. Libraries like jQuery and poly-fills that paper over the incompatibilities can mostly be avoided — an interesting resource is the website You Might Not Need jQuery.

We still organised our views as components, and they are communicating via a very simple event dispatcher. Some things had to be done by foot, but not too much. It works, although the result is not as pure as it would have been with declarative views as facilitated by React and a functional state container like Redux. We’re still fans of the React+Redux approach and we’re using it happily (at least for now) for other projects, but we’re also skeptical regarding the long term costs, especially from relying on the npm ecosystem. Which approach will result in less maintenance burden? We don’t know yet. Time will tell.

Analysing a React web app using SonarQube

Many developers especially from the Java world may know the code analysis platform SonarQube (formerly SONAR). While its focus was mostly integration all the great analysis tools for Java the modular architecture allows plugging tools for other languages to provide linter results and code coverage under the same web interface.

We are a polyglot bunch and are using more and more React in addition to our Java, C++, .Net and “what not” projects. Of course we would like the same quality overview for these JavaScript projects as we are used to in other ecosystems. So I tried SonarQube for react.

The start

Using SonarQube to analyse a JavaScript project is as easy as for the other languages: Just provide a sonar-project.properties file specifying the sources and some paths for analysis results and there you go. It may look similar to the following for a create-react-app:

sonar.projectKey=myproject:webclient
sonar.projectName=Webclient for my cool project
sonar.projectVersion=0.3.0

#sonar.language=js
sonar.sources=src
sonar.exclusions=src/tests/**
sonar.tests=src/tests
sonar.sourceEncoding=UTF-8

#sonar.test.inclusions=src/tests/**/*.test.js
sonar.coverage.exclusions=src/tests/**

sonar.junit.reportPaths=test-results/test-report.junit.xml
sonar.javascript.lcov.reportPaths=coverage/lcov.info

For the coverage you need to add some settings to your package.json, too:

{ ...
"devDependencies": {
"enzyme": "^3.3.0",
"enzyme-adapter-react-16": "^1.1.1",
"eslint": "^4.19.1",
"eslint-plugin-react": "^7.7.0",
"jest-junit": "^3.6.0"
},
"jest": {
"collectCoverageFrom": [
"src/**/*.{js,jsx}",
"!**/node_modules/**",
"!build/**"
],
"coverageReporters": [
"lcov",
"text"
]
},
"jest-junit": {
"output": "test-results/test-report.junit.xml"
},
...
}

This is all nice but the set of built-in rules for JavaScript is a bit thin and does not fit React apps nicely.

ESLint to the recue

But you can make SonarQube use ESLint and thus become more useful.

First you have to install the ESLint Plugin for SonarQube from github.

Second you have to setup ESLint to your liking using eslint --init in your project. That results in a eslintrc.js similar to this:

module.exports = {
  'env': {
    'browser': true,
    'commonjs': true,
    'es6': true
  },
  'extends': 'eslint:recommended',
  'parserOptions': {
    'ecmaFeatures': {
      'experimentalObjectRestSpread': true,
      'jsx': true
    },
    'sourceType': 'module'
  },
  'plugins': [
    'react'
  ],
  'rules': {
    'indent': [
      'error',
      2
    ],
    'linebreak-style': [
      'error',
      'unix'
    ],
    'quotes': [
      'error',
      'single'
    ],
    'semi': [
      'error',
      'always'
    ]
  }
};

Lastly enable the ESLint ruleset for your project in sonarqube and look at the results. You may need to tune one thing or another but you will get some useful static analysis helping you to improve your code quality further.

Internationalization of a React application with react-intl

For the internationalization of a React application I have recently used the seemingly popular react-intl package by Yahoo.

The basic usage is simple. To resolve a message use the FormattedMessage tag in the render method of a React component:

import {FormattedMessage} from "react-intl";

class Greeting extends React.Component {
  render() {
    return (
      <div>
        <FormattedMessage id="greeting.message"
            defaultMessage={"Hello, world!"}/>
      </div>
    );
  }
}

Injecting the “intl” property

If you have a text in your application that can’t be simply resolved with a FormattedMessage tag, because you need it as a string variable in your code, you have to inject the intl property into your React component and then resolve the message via the formatMessage method on the intl property.

To inject this property you have to wrap the component class via the injectIntl() function and then re-assign the wrapped class to the original class identifier:

import {intlShape, injectIntl} from "react-intl";

class SearchField extends React.Component {
  render() {
    const intl = this.props.intl;
    const placeholder = intl.formatMessage({
        id: "search.field.placeholder",
        defaultMessage: "Search"
      });
    return (<input type="search" name="query"
               placeholder={placeholder}/>);
  }
}
SearchField.propTypes = {
    intl: intlShape.isRequired
};
SearchField = injectIntl(SearchField);

Preserving references to components

In one of the components I had captured a reference to a child component with the React ref attribute:

ref={(component) => this.searchInput = component}

After wrapping the parent component class via injectIntl() as described above in order to internationalize it, the internal reference stopped working. It took me a while to figure out how to fix it, since it’s not directly mentioned in the documentation. You have to pass the “withRef: true” option to the injectIntl() call:

SearchForm = injectIntl(SearchForm, {withRef: true});

Here’s a complete example:

import {intlShape, injectIntl} from "react-intl";

class SearchForm extends React.Component {
  render() {
    const intl = this.props.intl;
    const placeholder = intl.formatMessage({
        id: "search.field.placeholder",
        defaultMessage: "Search"
      });
    return (
      <form>
        <input type="search" name="query"
               placeholder={placeholder}
               ref={(c) => this.searchInput = c}/>
      </form>
    );
  }
}
SearchForm.propTypes = {
  intl: intlShape.isRequired
};
SearchForm = injectIntl(SearchForm,
                        {withRef: true});

Conclusion

Although react-intl appears to be one of the more mature internationalization packages for React, the overall experience isn’t too great. Unfortunately, you have to litter the code of your components with dependency injection boilerplate code, and the documentation is lacking.