Aligning the Abstraction Level with constant booleans

Constant booleans can help to maintain a single level of abstraction in one method. They are less expensive than a separate method and a big improvement over a mere comment.

If you ever have done consulting, mentoring or teaching on programming techniques I’m sure you have experienced joy as well as disappointment when your “students” either took on your advice and followed it in their day-to-day work or when they just did what you said as long as you sat next to them but forgot all about it the next day. The disappointing behavior often comes from them not fully appreciating, or not being able to fully recognize the advantages of your solution. (And as you are the mentor/consultant/teacher, the latter might also be your fault).

One example for that is the principle to operate on only one level of abstraction within a method or function. See here for a detailed explanation. I have been applying this technique more or less unconsciously already for a long time now and was reminded of it as the Single-Level-of-Abstraction-Principle in Robert C. Martin’s Clean Code.

I have been trying to put this principle in peoples minds for some time now but often with little success. Sure, they often do see the advantages of arriving at much more readable code but they often ignore it in their own code. Most of the time they just don’t see the necessity to create another method with a meaningful name or they content themselves just with putting a comment above some chunk of lower abstraction code (The resulting loud screams for a Extract-Method refactoring often remain unheard, too)

Lately, I did have fairly good success with one little sub-technique of this principle: constant booleans for if-statements. That is, instead of (C++ code):

void someMethod()
{
   if (hard_to_read_boolean_expression_using_lower_abstractions)
   {
      // do stuff
   }
}

you write:

void someMethod()
{
   const bool expressive_name = 
      hard_to_read_boolean_expression_using_lower_abstractions;
   if (expressive_name)
   {
      // do stuff
   }
}

I guess the main reason for the success of this sub-technique is that it increases readability a lot at a cost that is only a tiny bit greater than a simple comment.

True, in many cases it may be even more readable to put the whole if-statement in another method, but using a boolean constant like above is already a big improvement.

FindBugs-driven bughunting in legacy projects

I have been working on a >100k lines legacy project for a while now. We have to juggle customer requests, bug fixes and refactoring so it is hard to improve the quality and employ new techniques or tools while keeping the software running and the clients happy. Initially there were no unit tests and most of the code had a gigantic cyclomatic complexity. Over the course of time we managed to put the system under continuous integration, employed quite some unit tests and analyzed code “hotspots” and our progress with crap4j.

Normally we get bug reports from our userbase or have to test manually to find bugs. A few weeks ago I tried a new approach to bughunting in legacy projects using FindBugs. Many of you surely know this useful tool, so I just want to describe my experiences in that project using FindBugs. Many of the bugs may be in parts of the application which are seldom used or only appear in hard to reproduce circumstances. First a short list of what I encountered and how I dealt with it.

Interesting found bugs in the project

  • There was a calculation using an integer division but returning a double. So the actual computation result was wrong but yet the error would have been hard to catch because people rarely recalculate results of a computer. When writing the test associated to the bugfix I found a StackOverFlowError too!
  • There were quite some null dereferences found, often in contructs like
     if (s == null && s.length() == 0)
     

    instead of

    if (s == null || s.length() == 0)
    

    which could be simplified or rewritten anyway. Sometimes there were possibilities for null dereferences on some paths despite of several null checks in the code.

  • Many performance bugs which may or may not have an effect on overall performance of the system like: new String(), new Integer(12), string concatenation across loops, inefficient usage of java.util.Map.keySet() instead of java.util.Map.entrySet() etc.
  • Some dead stores of local variables and statements without effect which could be thrown away or be corrected to do the intended things.

Things you may want to ignore

There are of course some bugs that you may ignore for now because you know that it is a common pattern in the team and abuse and thus errors are extremely unlikely. I, for example, opted to ignore some dozens of “may expose internal representation” found bugs regarding arrays in interfaces or accessibly via getters because it is a common pattern on the team not to tamper existing arrays as they are seen as immutable by the team members. It would have taken too much time to fix all those without that much of a benefit.

You may opt to ignore the performance bugs too but they are usually easy to fix.

Tips

  • If you have many foundbugs, fix the easy ones to be able to see the important ones more easily.
  • Ignore certain bug categories for now, fix them later, when you stumble upon them.
  • Concentrate on the ones that lead to wrong behaviour and crashes of your application.
  • Try to reproduce the problem with unit test and then fix the code whenever feasible! Tests are great to expose the bug and fix it without unwanted regressions!
  • Many bugs appear in places which need refactoring anyway so here is your chance to catch several flies at once.

Conclusion

With FindBugs you can find common programming errors sprinkled across the whole application in places where you probably would not have looked for years. It can help you to understand some common patterns of your team members and help you all to improve your code quality. Sometimes it even finds some hard to spot errors like the integer computation or null dereferences on certain paths. This is even more true in entangled legacy projects without proper test coverage.

A blind spot of Continuous Integration

Imagine you haven’t changed a continuously integrated project for months when suddenly a unit test breaks. Here’s why CI has a blind spot with flawed tests.

In the early days of April 2008, we updated our hudson continuous integration (CI) server to a new version. This was no unusual action, as there was a new version every day back then, bringing new features in a rapid rate. What was unusual after the upgrade was that one of the surveilled projects failed to build all of a sudden.

Sudden (test) failure without a change

The build was started manually, without a code change. The project itself was inactive back then, meaning that no changes were made for months. And suddenly, a unit test broke. The test was in the project for two whole years without ever going off. What happened?

Good unit tests

There are rules for good unit tests. A basic set are the A-TRIP rules formulated in the excellent beginner’s book “Pragmatic Unit Testing” by Andy Hunt and Dave Thomas. The failed test clearly disobeyed the “repeatable” rule (the R in A-TRIP): It didn’t result in the same result as before while the code under test didn’t change.

Write repeatable tests or your CI will be blind (partially)

The cause of the failed test was putting the clocks back because the daylight-saving time part of the year began. The unit test secured some date calculations by taking the current date and comparing it to future and past dates that got calculated. The calculation went wrong when the daylight-saving mode changes in the calculated period, which was a bug. Repeatability of the unit test was lost when “the current date” entered the code – whether on the unit test or productive code side.

Two years of blindness

How could this bug survive two years without being noticed? The project was under CI surveillance since the beginning, the unit test to detect the bug was present along with the bugged code. The answer is: We never programmed for this project around the weeks of the year when the clock is adjusted and the bug occurs. This was a coincidence influenced by the customer’s schedule. So every time CI (or we) ran the unit test, it passed. Until that day right after putting the clocks back.

How to avoid this blind spot

There are two things you can do to avoid this scenario:

  • Always inject a fixed “the current date” into your code when dealing with date calculations. Only use absolute dates in your unit tests. Time isn’t a healer for your tests, it’s a beast to be tamed.
  • Set up a nightly build for your project that runs once a day even when no changes have been made. It would have caught this bug one and a half year earlier.

To sum it up:

CI only spots bugs when they move (aka the code is changed). Nightly builds provide a (fuzzy) security layer against non-repeatable unit tests. And unit tests with flaws provide only delusory security.

Additional background information

After fully understanding the circumstances, we were curious why the customer didn’t notice the bug and asked him about it. The answer was delightful: “Our computers don’t adjust their clocks. Daylight-saving time only causes trouble.” What a wise decision!

For a good comparison of CI vs. Nightly Builds see this blog entry.

The fallacy of “the right tool”

There is a fallacy around Polyglot Programming, especially the term “the right tool for the job”: Programming languages aren’t tools.

Let me start this blog post with a disclaimer: I’m really convinced of the value of multilingual programming and also think that applying the “right tool for the job” is a good thing. But there is a fallacy around this concept in programming that i want to point out here. The fallacy doesn’t invalidate the concept, keep that in mind.

Polyglot cineasts

Let me start with an odd thought: What if there was a movie, a complicated international thriller around a political intrigue, playing in over half a dozen countries. The actors of each country speak their native tongue and no subtitles are provided. Who would be able to follow the plot? Only a chosen few of really polyglot cineasts would ever appreciate the movie. Most of us wouldn’t want to see it.

Polyglot programming

Our last web application project was comprised of that half a dozen languages (Groovy, Java, HTML, CSS, HQL/SQL, Ant). We could easily include more programming languages if we feel the need to do it. Adding Clojure, Scala or Ruby/JRuby doesn’t sound absurd to us. A programmer capable of knowing and switching between numerous programming languages is called a “Polyglot Programmer“.

The main justification for heterogeneous (polyglot) projects often is the concept of “using the right tool for the job”. The job often is a subtask of the whole project, like building the project, accessing the database, implementing the ever-changing business logic. For each subtask, some other language might outshine the competitors. Besides some reasonable doubt concerning the hidden cost of this approach, there is a misconception of the term “tool”.

Programming languages aren’t tools

If you use a tool in (basic or advanced) engineering, let’s say a hammer to drive some nails into a wooden plate or a screwdriver to decompose your computer, you’ll put the tool aside as soon as “the job” is finished. The resulting product (a new wooden cabinet or a collection of circuit boards) doesn’t include the tool. Most of the times, your job is really finished, without “change requests” to the product.

If your tool happens to be a programming language, you’ll produce source code bound to the tool. Without the tool, the product isn’t working at all. If you regard your compiled binaries as “the product”, you can’t deal with “change requests”, a concept that programmers learn early and painful. The product of a programmer obviously is source code. And programming languages don’t act as tools, but as materials in this respect. Tools go away, materials stick.

Programming languages are materials

As source code is tied to its programming language, they form a conceptional union. So I suggest to change the term to “using the right material for the job” when speaking about programming languages. This is a more profound decision to make in comparision to choosing between a Phillips style or a TORX screwdriver. Materials need to outlast when the tools are long put aside.

But there are tools, too

In my web application example above, we used a lot of tools. Grails is our framework of choice, Jetty our web container to deploy to, the Spring Framework provides mighty utilities and we used IDEA to bolt it all together. We could easily exchange Tomcat for Jetty or IDEA with Eclipse without changing the source code (the example doesn’t work that easy for Grails and Spring, though). Tools need to be replaceable or even disposable.

Summary

The term “the right tool for the job” cannot easily be applied to programming languages, as they aren’t tools, but materials. This is why polyglot programming is dangerous to when used heavily in a single project. It’s easy to end up with a tangled “amalgam project”.

Two more disclaimers:

  • If chosen right, “composite construction” is a powerful concept that unifies the advantages of two materials instead of adding up their drawbacks.
  • Being multilingual is advantageous for a programmer. Just don’t show it all off in one project.

A more elegant way to equals in Java

Implementing equals and hashCode in Java is a basic part of your toolbox. Here I describe a cleaner and less error-prone way to use in your code.

— Disclaimer: I know this is pretty basic stuff but many, many programmers are doing it still wrong —
As a Java programmer you know how to implement equals and that hashCode has to be implemented as well. You use your favorite IDE to generate the necessary code, use common wisdom to help you code it by hand or use annotations. But there is a fourth way: introducing EqualsBuilder (not the apache commons one which has some drawbacks over this one) which implements the general rules for equals and hashCode:

public class EqualsBuilder {

  public static interface IComparable {
      public Object[] getValuesToCompare();
  }

  private EqualsBuilder() {
    super();
  }

  public static int getHashCode(IComparable one) {
    if (null == one) {
      return 0;
    }
    final int prime = 31;
    int result = 1;
    for (Object o : one.getValuesToCompare()) {
      result = prime * result
                + EqualsBuilder.calculateHashCode(o);
    }
    return result;
  }

  private static int calculateHashCode(Object o) {
    if (null == o) {
      return 0;
    }
    return o.hashCode();
  }

  public static boolean isEqual(IComparable one,
                                              Object two) {
    if (null == one || null == two) {
      return false;
    }
    if (one.getClass() != two.getClass()) {
      return false;
    }
    return compareTwoArrays(one.getValuesToCompare(),
              ((IComparable) two).getValuesToCompare());
  }

  private static boolean compareTwoArrays(Object arrayOne, Object arrayTwo) {
      if (Array.getLength(arrayOne) != Array.getLength(arrayTwo)) {
        return false;
      }
      for (int i = 0; i < Array.getLength(arrayOne); i++) {
        if (!EqualsBuilder.areEqual(Array.get(arrayOne, i), Array.get(arrayTwo, i))) {
          return false;
        }
      }
      return true;
  }

  private static boolean areEqual(Object objectOne, Object objectTwo) {
    if (null == objectOne) {
      return null == objectTwo;
    }
    if (null == objectTwo) {
      return false;
    }
    if (objectOne.getClass().isArray() && objectTwo.getClass().isArray()) {
        return compareTwoArrays(objectOne, objectTwo);
    }
    return objectOne.equals(objectTwo);
  }

}

The interface IComparable ensures that equals and hashCode are based on the same instance variables.
To use it your class needs to implement the interface and call the appropiate methods from EqualsBuilder:

public class MyClass implements IComparable {
  private int count;
  private String name;

  public Object[] getValuesToCompare() {
    return new Object[] {Integer.valueOf(count), name};
  }

  @Override
  public int hashCode() {
    return EqualsBuilder.getHashCode(this);
  }

  @Override
  public boolean equals(Object obj) {
    return EqualsBuilder.isEqual(this, obj);
  }
} 

Update: If you want to use isEqual directly one test should be added to the start:

  if (one == two) {
    return true;
  }

Thanks to Nyarla for this hint.

Update 2: Thanks to a hint by Alex I fixed a bug in areEqual: when an array (especially a primitive one) is passed than the equals would return a wrong result.

Update 3: The newly added compareTwoArrays method had a bug: it resulted in true if arrayTwo is bigger than arrayOne but starts the same. Thanks to Thierry for pointing that out.

Forced into switch/case – Qt’s Model/View API

During my life as a programmer I have more and more come to dislike switch/case statements. They tend to be hard to grasp and with languages like C/C++ they are often the source of hard-to-find errors. Compilers that have warnings about missing default statements or missing cases for enumerated values can help to mitigate the situation, but still, I try to avoid them whenever I can.

The same holds true for if-elseif cascades or lots of if-elses in one method. They are hard to read, hard to maintain, increase the Crap, etc.

If you share this kind of mindset I invite you implement to some custom models with Qt4’s Model/View API. The design of the Model/View classes is derived from the well-known MVC pattern which separates data (model), presentation (view) and application logic (controller). In Qt’s case, view and controller are combined, supposedly making it simpler to use.

The basic idea of Qt’s implementation of its Model/View design is that views communicate with models using so-called model indexes. Using a table as an example, a row/column pair of (3,4) would be a model index pointing to data element in row 3, column 4. When a view is to be displayed it asks the attached model for all sorts of information about the data.

There are a few model implementations for standard tasks like simple string lists (QStringListModel) or file system manipulation (QDirModel < Qt4.4, QFileSystemModel >= Qt4.4). But usually you have to roll your own. For that, you have to subclass one of the abstract model classes that suits your needs best and implement some crucial methods.

For example, model methods rowCount and columnCount are called by the view to obtain the range of data it has to display. It then uses, among others, the data method to query all the stuff it needs to display the data items. The data method has the following signature:

QVariant data ( const QModelIndex&amp; index, int role ) const

Seems easy to understand: parameter index determines the data item to display and with QVariant as return type it is possible to return a wide range of data types. Parameter role is used to query different aspects of the data items. Apart from Qt::DisplayRole, which usually triggers the model to return some text, there are quite a lot other roles. Let’s look at a few examples:

  • Qt::ToolTipRole can be used to define a tool tip about the data item
  • Qt::FontRole can be use to define specific fonts
  • Qt::BackgroundRole and Qt::ForegroundRole can be used to set corresponding colors

So the views call data repeatedly with all the different roles and your model implementation is supposed to handle those different calls correctly. Say you implement a table model with some rows and columns. The design of the data method is forcing you into something like this …

QVariant data ( const QModelIndex&amp; index, int role ) const  {
   if (!index.isValid()) {
      return QVariant();
   }

   switch (role)
   {
      case Qt::DisplayRole:
         switch (index.column())
         {
            case 0:
               // return display data for column 0
               break;
            case 1:
               // return display data for column 1
               break;
            ...
         }
         break;

      case Qt::ToolTipRole:
         switch (index.column())
         {
            case 0:
               // return tool tip data for column 0
               break;
            case 1:
               // return tool tip data for column 1
               break;
            ...
         }
         break;
      ...
   }
}

… or equivalent if-else structures. What happens here? The design of the data method forces the implementation to “switch” over role and column in one method. But nested switch/case statements? AARGH!! With our mindset outlined in the beginning this is clearly unacceptable.

So what to do? Well, to tell the truth, I’m still working on the best™ solution to that but, anyway, here is a first easy improvement: handler methods. Define handler methods for each role you want to support and store them in a map. Like so:

#include &lt;QAbstractTableModel&gt;

class MyTableModel : public QAbstractTableModel
{
  Q_OBJECT

  typedef QVariant (MyTableModel::*RoleHandler) (const QModelIndex&amp; idx) const;
  typedef std::map&lt;int, RoleHandler&gt; RoleHandlerMap;

  public:
    enum Columns {
      NAME_COLUMN = 0,
      ADDRESS_COLUMN
    };

    MyTableModel() {
      m_roleHandlerMap[Qt::DisplayRole] =
         &amp;MyTableModel::displayRoleHandler;
      m_roleHandlerMap[Qt::ToolTipRole] =
         &amp;MyTableModel::tooltipRoleHandler;
    }

    QVariant displayRoleHandler(const QModelIndex&amp; idx) const {
      switch (idx.column()) {
        case NAME_COLUMN:
          // return name data
          break;

        case ADDRESS_COLUMN:
          // return address data
          break;

        default:
          Q_ASSERT(!&quot;Invalid column&quot;);
          break;
      }
      return QVariant();
    }

    QVariant tooltipRoleHandler(const QModelIndex&amp; idx) const {
      ...
    }

    QVariant data(const QModelIndex&amp; idx, int role) const {
      // omitted: check for invalid model index

      if (m_roleHandlerMap.count(role) == 0) {
        return QVariant();
      }

      RoleHandler roleHandler =
        (*m_roleHandlerMap.find(role)).second;
      return (this-&gt;*roleHandler)(idx);
    }
  private:
    RoleHandlerMap m_roleHandlerMap;
};

The advantage of this approach is that the supported roles are very well communicated. We still have to switch over the columns, though.

I’m currently working on a better solution which splits the data calls up into more meaningful methods and kind of binds the columns to specific parts of the data items in order to get a more row-centric approach: one row = one element, columns = element attributes. I hope this will get me out of this switch/case/if/else nightmare.

What do you think about it? I mean, is it just me, or is an API that forces you into crappy code just not so well done?

How would you solve this?

Follow-up to our Dev Brunch November 2009

A follow-up to our November 2009 Dev Brunch, summarizing the talks and providing bonus material.

Today we held our Dev Brunch meeting for November 2009. It was the last possible date for this month, but we were affected by absences nonetheless. This is the follow-up posting for this rather small gathering, summarizing the topics and providing additional information.

The Dev Brunch

If you want to know more about the meaning of the term “Dev Brunch” or how we realize it, have a look at the follow-up posting of October’s brunch. This time, no notebook was needed.

The November 2009 Dev Brunch

The topics of this session were:

  • Object Calisthenics by example – Experiences gained while programming a small project following the Object Calisthenics rules while practicing Test Driven Development, too.
  • Object Calisthenics inspected – Observations and insights gained when explaining Object Calisthenics to several teams, programmers and student courses.

As you can immediately see, the meeting was small, but surprisingly consistent. We didn’t agree upon the topic beforehands, but it was a perfect match. Everybody who missed this brunch definitely missed some very interesting first-hand experiences on Object Calisthenics, too. To ease this lack a bit, let me rephrase the content a bit.

Object Calisthenics

You might have heard about Object Calisthenics before, on this blog or other resources on the net. Perhaps you’ve read the original article, which is highly advised. In short, Object Calisthenics are a set of inspiring, if not irritating programming rules that should lead to better programming style through excercise. You should consult the links above for specifics.

Object Calisthenics by example

When applying the rules to a domain class model, some new techniques arose to compensate the “train wreck line”-programming style (see rule 4) and to introduce first class collections (rule eight) and avoid getters and setters (rule 9). This techniques included the use of the Visitor design pattern, which wasn’t the author’s first choice beforehands. Test Driven Development alone wouldn’t have led to this solution, but the solution works well for the given use case.

The author softened some rules for his example and found valid explanations for doing so. This might be the content of an additional blog posting that still needs to be written. It will be announced in the comments when published.

Test Driven Development and Object Calisthenics do not interfere with each other. They both aim for better code and design, but through different means. They could be regarded as complements in a programmer’s toolbox.

Object Calisthenics inspected

When teaching the nine rules, some effects occurred repeatedly. The first observation was that the rules follow a dramatic composition that orders them from “most obvious and immediate code improvement” to “hardest to achieve code improvement” and in the same order from “easiest to acknowledge” to “most controversial”. At the end of the list, the audience rioted most of the time. But if you reject the last few rules, you’ve silently agreed to the first ones, the ones with the greatest potential for immediate improvement.

Another observation is that the rules stick. Even if you reject them on first notion, it creeps into your thinking, whispering that “it might be possible right now with this code“. It’s a learning catalyst for those of us that aren’t born as programming super-heros. To speak in terms Kent Beck coined: Object Calisthenics provide some handy practices that might eventually lead to a better understanding of their underlying principles. Even beginners can follow the practices and review their code on compliance. When they fully get to know the principles (like Law Of Demeter, for example), they are already halfway there.

The third observation was that most experienced programmers intuitively revealed the principles behind the rules before I could even try to explain. Some even found very interesting associations with other principles that weren’t so obvious.

At last, Object Calisthenics, if performed as a group exercise, can be a team solder. You can rant over code together without regrets – the rules were made elsewhere. And you can discuss different solutions without feeling pointless – fulfilling the rules is the common goal for a short time.

The Dev Brunch retrospected

This brunch was small both in attendee and topic count. That created a very productive discussion. We’ll try to grow the insights gained today into additional blog entries. Stay tuned.

We are software tailors

Our company is called Softwareschneiderei (which is German for software tailoring). This name describes our intention to write bespoken software, software that fits people perfectly. Over time different additional metaphors from the tailor’s world came around: seams/tucks which describe places in software systems where cuts can be made and testing can be done. Tailoring is a craftsmanship so an apprenticeship model and the pride in our work exists.
This describes the mentoring and bespoken software development we do. But besides that we do a lot of bug fixing, improvement of existing software which was written by others and evaluation of other people’s code. Thanks to a piece from Jason Fried (thanx Jason!) those other parts fit perfectly into our vision as software tailors: we iron/press (fix bugs, improve the code), we trim and cut (remove bottlenecks and unwanted functionality or extend the software to use other systems) and we measure (analyze, inspect and evaluate systems).

Speed up your buildbox, Part III: Memory

This is the third part of a series on how to boost your build box without much effort. This episode talks about the effects of faster and more RAM.

© Friedberg - Fotolia.comIn the first and second part of our effort to speed up our buildbox, we replaced the harddisk with a RAM disk and swapped in a bigger CPU. This brought the build time down from 03:30 minutes to 02:00 minutes.

Boosting the memory

When we began the journey, we wanted to undercut the 02:00 minutes threshold. The last component that directly impacts performance of our box was the memory. We started out with 4 GB of DDR2-800 modules. To have a feeling for the effects, we upgraded to 4 GB of DDR2-1066 first and then added another 4 GB, resulting in 8 GB of RAM. We expected the performance gain to be small, but noticeable. The RAM disk, for example, is directly affected by memory speed.

As much, but faster

The first upgrade brought the first surprise: Upgrading from DDR2-800 to DDR2-1066 modules didn’t change anything. It’s not that the mainboard or CPU doesn’t support the faster RAM, it just seems to be fast enough, despite the data bus clock rate. Our build process still took 02:00 minutes, reproducible and without exception.

Filling all the banks

The mainboard can load up to 16 GB of RAM, but our budget just allowed to buy 8 GB of DDR2-1066 RAM. We installed it and ran the same 32 bit Ubuntu Linux as before. The build process took 02:00 minutes, which was expected now.

Changing to 64bit

We changed to boot harddisk, installed a 64 bit Ubuntu Linux and ran the build again. Still 02:00 minutes. The switch to 64 bit wasn’t a big deal with Java, but some of the included native libraries complained about the change. Recompiling them solved the issue.

Finally reaching the target

As a last measure, we increased the maximum memory of the build JVM to the biggest value it would accept. This was -Xmx2600m, a surplus of 600 MB to the original setting. This sped up the build process by five seconds, it took 01:55 minutes now.

Conclusion and perspective

We’ve reached our anticipated target of less than two minutes build time. We exceeded our original budget of 500 EUR, but bought some parts that finally weren’t used in the build box, but elsewhere. The two parts that made the whole difference were the CPU and some more memory to spend it on the RAM disk.

If you want to speed up your single build box, aim for the CPU/RAM combo and try to install a RAM disk to perform all the work on.

This leads me to the perspective of the next part of the series: If you plugged in the most expensive CPU and enormous amounts of RAM to speed up your buildbox, you still aren’t done. You should invest some time to look into distributed builds. Hudson as our continuous integration server provides nearly instant “build slave” support. With this feature, you can set up a whole build farm to further increase your build throughput.

Stay tuned for “Part IV: Beyond the box”

CMake Builder Plugin Reloaded

A few months ago I set out to build my first hudson plugin. It was an interesting, sometimes difficult journey which came to a good end with the CMake Builder Plugin, a build tool which can be used to build cmake projects with hudson. The feature set of this first version was somewhat limited since I applied the scratch-my-own-itch approach – which by the time meant only support for GNU Make under Linux.

As expected, it wasn’t long until feature requests and enhancement suggestions came up in the comments of my corresponding blog post. So in order to make the plugin more widely useable I used our second  Open Source Love Day to add some nice little features.

Update: I used our latest OSLD to make the plugin behave in master/slave setups. Check it out!

Let’s take a walk through the configuration of version 1.0 :

Path to cmake executable

1. As in the first version you have to set the path to the cmake executable if it’s not already in the current PATH.

2. The build configuration starts as in the first version with Source Directory, Build Directory and Install Directory.

CMake Builder Configuration Page

3. The Build Type can now be selected more conveniently by a combo box.

4. If Clean Build is checked, the Build Dir gets deleted on every build

Advanced Configuration Page

5. The advanced configuration part starts with Makefile Generator parameter which can be used to utilize the corresponding cmake feature.

6. The next two parameters Make Command and Install Command can be used if make tools other than GNU Make should be used

7. Parameter Preload Script can be used to point to a suitable cmake pre-load script file. This gets added to the cmake call as parameter of the -C switch.

8. Other CMake Arguments can be used to set arbitrary additional cmake parameters.

The cmake call will then be build like this:

/path/to/cmake  \
   -C </path/to/preload/script/if/given   \
   -G <Makefile Generator>  \
   -DCMAKE_INSTALL_PREFIX=<Install Dir> \
   -DCMAKE_BUILD_TYPE=<Build Type>  \
   <Other CMake Args>  \
   <Source Dir>

After that, the given Make and Install Commands are used to build and install the project.

With all these new configuration elements, the CMake Builder Plugin should now be applicable in nearly every project context. If it is still not useable in your particular setting, please let me know. Needless to say, feedback of any kind is always appreciated.