Consistency over magic, please

The Groovy programming language is a JVM based scripting language. It is used by the Grails web framework and the Gradle build automation system.

Groovy has a language feature called Named argument constructors. This means that given a class with properties, for example

class Example {
  String text
}

you can initialize the properties directly when calling the constructor:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

This is basically a shortcut for initializing the properties via explicit assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So far so good.

Enter Grails

We use the aforementioned Grails framework for some of our web application projects. It is advertised on its website as featuring “convention-over-configuration” and “sensible defaults”. Grails uses the Groovy programming language, and a simple domain class looks just like a plain old Groovy class, except that it lives under the grails-app/domain directory (this is one of the convention-over-configuration aspects):

class Example {
  String text
}

As expected, you can initialize the property via regular assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So one might expect that you can initialize it via a named argument constructor call as well:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

And indeed, you can. But what’s this? Our assertion fails:

assert example.text == ' This is an example. '
               |    |
               |    false
               This is an example.

It is not directly obvious from the assertion failure output, but the property value is indeed no longer equal to the expected text: the leading and trailing spaces got trimmed!

I was surprised, but after some research in Grails documentation it turned out that it’s not a bug, but a feature. In the section on Data Binding, you can find the following sentence:

The mass property binding mechanism will by default automatically trim all Strings at binding time. To disable this behavior set the grails.databinding.trimStrings property to false in grails-app/conf/application.groovy.

Groovy’s named argument constructor feature is used as a data binding mechanism by Grails to bind web request parameters to a domain object. For this the default behavior was modified, so that strings are automatically trimmed. I can only guess that this is considered to be an instance of the “sensible defaults” mentioned on the Grails homepage.

To me personally this kind of surprising behavior is not a sensible default, and I think it goes against the Principle of least astonishement. I prefer consistency over “magic”.

luabind deboostified tips and tricks

luabind deboostified is a fork of the luabind project that helps exposing APIs to Lua. As the name implies, it replaces the boost dependency with modern C++, which makes it a lot more pleasant to work with.

Here are a few tips and tricks I learned while working with it. Some tricks might be applicable to the original luabind – I do not know.

1. Splitting module registration

You can split the registration code for different classes. I usually add a register function per class, like this:

struct A {
  void doSomething();
  static luabind::scope registerWithLua();
};

struct B {
  void goodStuff();
  static luabind::scope registerWithLua();
};

You can then combine their registration code into a single module on the Lua side:

void registerAll(lua_State* L) {
  luabind::module(L)[
    A::registerWithLua(),
    B::registerWithLua()];
}

The implementation of a registration function looks like this:

luabind::scope A::registerWithLua()
{
  return luabind::class_<A>("A")
    .def("doSomething", &A::doSomething);
}

2. Multiple policies and multiple return values

Unlike C++, Lua has real multiple return values. You can use that by utilizing the return value policies that luabind offers. Lets say, you want to write this in Lua:

local x, y = a.getPosition()

The C++ side could look like this:

void getPosition(A const& a, float& x, float& y);

The deboostified fork needs its policies supplied in a type list. Let’s use a small helper meta-function to build that:

template <typename... T>
using joined = 
  typename luabind::meta::join<T...>::type;

Once you have that, you can expose it like this:

luabind::def("getPosition", &getPosition,
              joined<
                luabind::pure_out_value<2>,
                luabind::pure_out_value<3>
              >());

3. Specialized data structures using luabind::object

Using the converters in luabind is not the only way to make Lua values from C++. Almost everything you can do in Lua itself, you can do with luabind::object. Here is a somewhat contrived example:

luabind::object repeat(luabind::object what,
                       int count) {
  // Create a new table object
  auto result = luabind::newtable(
    what.interpreter());
  // Fill it as an array [1..N]
  for (int i = 1; i <= count; ++i)
    result[i] = what;
  return result;
}

This function can then be exported via luabind::def and used just like any other function. This is just the tip of the iceberg, though. For example, you can also write functions that, at runtime, behave differently when a number is passed in as when a table is passed in. You can find out the Lua type with luabind::type(myObject).

Of course, as soon as you want to create new objects to return to Lua, you need the lua_State pointer in that function. Using the interpreter from a passed-in luabind::object is one way, but I have yet to find another pleasant way to do this. It is probably possible to use the policies to do this, and have them pass that in as a special parameter, but for now I am using some complicated machinery to bind lambda functions that capture the Lua interpreter.

That’s it for now..

Keep in mind that these are not thoroughly researched best-practices, but patterns I have used to solve actual problems. There might be better solutions out there – if you know any, please let me know. Hope this helped!

Client-side web development: Drink the Kool-Aid or be cautious?

Client side web development is a fast-changing world. JavaScript libraries and frameworks come and go monthly. A couple of years ago jQuery was a huge thing, then AngularJS, and nowadays people use React or Vue.js with a state container like Redux. And so do we for new projects. Unfortunately, these modern client-side frameworks are based on the npm ecosystem, which is notoriously known for its dependency bloat. Even if you only have a couple of direct dependencies the package manager lock file will list hundreds of indirect dependencies. Experience has shown that lots of dependencies will result in a maintenance burden as time passes, especially when you have to do major version updates. Also, as mentioned above, frameworks come and then go out of fashion, and the maintainers of a framework move on to their next big thing pet project, leaving you and your project sitting on a barely or no longer maintained base, and frameworks can’t be easily replaced, because they tend to permeate every aspect of your application.

With this frustrating experience in mind we recently did an experiment for a new medium sized web project. We avoided frameworks and the npm ecosystem and only used JavaScript libraries with no or very few indirect dependencies, which really were necessary. Browsers have become better at being compatible to web standards, at least regarding the basics. Libraries like jQuery and poly-fills that paper over the incompatibilities can mostly be avoided — an interesting resource is the website You Might Not Need jQuery.

We still organised our views as components, and they are communicating via a very simple event dispatcher. Some things had to be done by foot, but not too much. It works, although the result is not as pure as it would have been with declarative views as facilitated by React and a functional state container like Redux. We’re still fans of the React+Redux approach and we’re using it happily (at least for now) for other projects, but we’re also skeptical regarding the long term costs, especially from relying on the npm ecosystem. Which approach will result in less maintenance burden? We don’t know yet. Time will tell.

Decoding non-utf8 server responses using the Fetch API

The new Javascript Fetch API is really nice addition to the language and my preferable, and in fact the only bearable, way to do server requests.
The Promise based API is a lot nicer than older, purely callback-based, approaches.

The usual approach to get a text response from a server using the Fetch API looks like this:

let request = fetch(url)
  .then(response => response.text())
  .then(handleText);

But this has one subtle problem:

I was building a client application that reads weather data from a small embedded device. We did not have direct access to changing the functionality of that device, but we could upload static pages to it, and use its existing HTML API to query the amount of registered rainfall and lightning strikes.

Using the fetch API, I quickly got the data and extracted it from the HTML but some of the identifiers had some screwed up characters that looked like decoding problems. So I checked whether the HTTP Content-Type was set correctly in the response. To my surprise it was correctly set as Content-Type: text/html; charset=iso-8859-1.

So why did my Javascript Application not get that? After some digging, it turned out that Response’s text() function always decodes the payload as utf-8. The mismatch between that and the charset explained the problem!

Obviously, I had to do the decoding myself. The solution I picked was to use the TextDecoder class. It can decode an ArrayBuffer with a given encoding. Luckily, that is easy to get from the response:

let request = fetch(url)
  .then(response => response.arrayBuffer())
  .then(buffer => {
    let decoder = new TextDecoder("iso-8859-1");
    let text = decoder.decode(buffer);
    handleText(text);
  });

Since I only had to support that single encoding, that worked well for me. Keep in mind that the TextDecoder is still experimental Technology. However, we had a specific browser as a target and it works there. Lucky us!

For what the javascript!

The setting

We are developing and maintaining an important web application for one of our clients. Our application scrapes a web page and embeds our own content into that page frame.

One day our client told us of an additional block of elements at the bottom of each page. The block had a heading “Image Credits” and a broken image link strangely labeled “inArray”. We did not change anything on our side and the new blocks were not part of the HTML code of the pages.

Ok, so some new Javascript code must be the source of these strange elements on our pages.

The investigation

I started the investigation using the development tools of the browser (using F12). A search for the string “Image Credits” instantly brought me to the right place: A Javascript function called on document.ready(). The code was basically getting all images with a copyright attribute and put the findings in an array with the text as the key and the image url as the value. Then it would iterate over the array and add the copyright information at the bottom of each page.

But wait! Our array was empty and we had no images with copyright attributes. Still the block would be put out. I verified all this using the debugger in the browser and was a bit puzzled at first, especially by the strange name “inArray” that sounded more like code than some copyright information.

The cause

Then I looked at the iteration and it struck me like lightning: The code used for (name in copyrightArray) to iterate over the elements. Sounds correct, but it is not! Now we have to elaborate a bit, especially for all you folks without a special degree in Javascript coding:

In Javascript there is no distinct notion of associative arrays but you can access all enumerable properties of an object using square brackets (taken from Mozillas Javascript docs):

var string1 = "";
var object1 = {a: 1, b: 2, c: 3};

for (var property1 in object1) {
  string1 = string1 + object1[property1];
}

console.log(string1);
// expected output: "123"

In the case of an array the indices are “just enumerable properties with integer names and are otherwise identical to general object properties“.

So in our case we had an array object with a length of 0 and a property called inArray. Where did that come from? Digging further revealed that one of our third-party libraries added a function to the array prototype like so:

Array.prototype.inArray = function (value) {
  var i;
  for (i = 0; i &lt; this.length; i++) {
    if (this[i] === value) {
      return true;
    }
  }
  return false;
};

The solution

Usually you would iterate over an array using the integer index (old school) or better using the more modern and readable for…of (which also works on other iterable types). In this case that does not work because we do not use integer indices but string properties. So you have to use Object.keys().forEach() or check with hasOwnProperty() if in your for…in loop if the property is inherited or not to avoid getting unwanted properties of prototypes.

The takeaways

Iteration in Javascript is hard! See this lengthy discussion…The different constructs are named quite similar an all have subtle differences in behaviour. In addition, libraries can mess with the objects you think you know. So finally some advice from me:

  • Arrays are only true arrays with positive integer indices/property names!
  • Do not mess with the prototypes of well known objects, like our third-party library did…
  • Use for…of to iterate over true arrays or other iterables
  • Do not use associative arrays if other options are available. If you do, make sure to check if the properties are own properties and enumerable.

 

Game Optimization Resolved

In my last blog post, I explained a performance problem in my game abstractanks but not how I solved it.

So I had not done any optimization work in a while, so the first thing I did turned out to be an error. And not only in hindsight – I actually knew how to tackle a problem like that – I just temporarily forgot at that point.

Going down the rabbit hole

Where we left off, my profiler showed FriendlyUnitOccupies as the culprit. That function basically does circle/circle collision detection using a quad-tree as the spatial acceleration structure. Looking at the samples from my profiler, I could see that that it was descending into the tree quite deeply. Like all tree structures, a quad-tree does pointer-chasing which is very bad for modern CPUs. So I figured I should look at how to optimize that. The data structure was implemented in a hurry, so there seemed plenty to do:

  • Instead of recursing into each node, use tail-call optimization and early culling to speed up traversal.
  • Pre-cache the query with the max-search radius and the other requirements to the units, e.g. not dead, same team, etc.. and then use that to build a new tree for the actual queries.

Because the data structure was pretty non-generic, I started to basically rewrite it to use it in this scenario. While I was about half way through with that, it dawned on me that I was barking at the wrong tree.

Taking a step back

The excellent book Video Game Optimization has some great advice on which level to attack an optimization problem.

  1. System-level. Can you change the system to do something differently and still solve your problem?
  2. Algorithm-level. Are you using the most efficient right algorithm for the data you have?
  3. Micro-level. Are you not wasting any processing power on the lower levels?

I was already on the algorithm level. So I went back to the systemic level: What if the AI did not try to change the target position that often, maybe just every few seconds? That effectively meant lowering the AIs APM. It’s not a bad solution, especially since that makes the AI behave more human. But on the other hand, real-time games, as the name implies, have a soft real-time requirement. So you generally like to avoid huge workloads that go over your frame budget. With how slow the algorithm was, that could easily be the case. The solution is then to do the work concurrently, either by splitting it up or doing it in the background. Both solutions seemed difficult, since the AI code does currently not allow for easy concurrency. So that idea was out.

What if the parking-positions where cached? Subsequent calls to get parking positions could probably reuse a lot of the positions that were computed in previous frames, given that the target point only moves by a little bit each frame. I figured that might work, but it requires more housekeeping and data-dependencies – the result of the previous query needs to be used for the next. That seemed complex and therefore brittle.

A Solution?

Temporal coherency was a pretty good idea though, but not the scale was to big this time. What if I exploited it within a single frame? Now the original code did obscure this, but maybe it gets a little more clear if I write it like this:

optional<v2> GameWorld::FindFreePosition(v2 Center, std::vector<v2> const& Occupied)
{
  auto CheckPosition = [&](v2 Candiate)
  {
    if (!IsPassable(Candidate))
      return false;

    if (OverlapsWith(Occupied))
      return false;

    return !FriendlyUnitOccupies(Candidate);  
  };
  auto Samples = SampledPositions(Center, SomeRandomness());
  auto Found = find_if(SampledPositions.begin(), SampledPositions.end(), CheckPosition(Position));
  
  return (Found != SampledPositions.end()) ? *Found : none;
}

Now as I explained in the previous post, this was called in a loop for each unit to be parked.

std::vector<v2> GameWorld::FindParkingPositions(v2 Center, std::size_t N)
{
  std::vector<v2> Results;
  for (std::size_t i = 0; i < N; ++i)
  {
    auto MaybePosition = FindFreePosition(Center, Results);
    if (!MaybePosition) // No more free space?
      break;
    Results.push_back(*MaybePosition);
  }
  return Results;
}

Easy to see: counting the number of CheckPosition calls, this algorithm is O(n) in number of sampled positions. The number of sampled positions depends linearly on the number of units to be parked, because more units obviously need more parking positions, essentially making this O(n²) for the unit count! But the positions get resampled for each unit – with the only change being the little bit of randomness that is injected everytime. In other words, each call would just test false for sampled positions roughly corresponding to the units that are already placed.

So what I did was a very small change: only inject the randomness once and merge the loops:

auto Samples = SampledPositions(Center, SomeRandomness());
std::vector<v2> Results;

for (auto const& Sample : Samples)
{
  if (CheckPosition(Sample))
    Results.push_back(Sample);

  if (Result.size() >= N)
    break;
}
return Results;

And this did the trick! The algorithm’s run-time when below the 1ms range, and the smaller variation in randomness is not really visible.

Conslusions

I was thrown off-track be the false conclusion that CheckPositions was too slow when it was in fact just called too often. Context is key! Always approach these things outside-in.
Using less-than-optimal abstractions obscured the opportunity to hoist out the sample generation from me. Iteration is always a separate concern, even when it is not on containers!

Transforming C-Style arrays in java

Every now and then some customer asks us to fix or improve some important legacy application other people have written. Usually, such projects are fun and it is rewarding to see the improvements both in code and value for the users.

In one of these projects there is a Java GUI application that uses C-style arrays for some of its central data structures:

public class LegoBox  {
  public LegoBrick[] bricks = new LegoBrick[8000];
  public int brickCount = 0;
}

The array-length is a constant upper bound and does not denote the actual elements in the array. Elements are added dynamically to the array and it looks like a typical job for a automatically growing Collection like java.util.ArrayList. Most operations simply iterate over all elements and perform some calculations. But changing such a central part in a performance sensitive application is not only a lot of work but also risky.

We decided to take an incremental approach to improve code readability and maintainability and measured performance with a large, representative dataset between refactorings. There are two easy alternative APIs that improve working with the above data structure.

Imperative API

Smooth migration from the existing imperative “ask”-code (see “Tell, don’t ask”-principle) can be realized by providing an java.util.Iterable to the underlying array.


public int countRedBricks() {
  int redBrickCount = 0;
  for (int i = 0; i < box.brickCount; i++) {
    if (box.bricks[i].isRed()) {
      redBrickCount++;
    }
  }
  return redBrickCount;
}

Code like above is easily transformed to much clearer code like below:

public class LegoBox  {
  public LegoBrick[] bricks = new LegoBrick[8000];
  public int brickCount = 0;

  public Iterable<LegoBrick> allBricks() {
    return Arrays.stream(tr, 0, brickCount).collect(Collectors.toList());
  }
}

public int countRedBricks() {
  int redBrickCount = 0;
  for (LegoBrick brick : box.bricks) {
    if (brick.isRed()) {
      redBrickCount++;
    }
  }
  return redBrickCount;
}

Functional API

A nice alternative to the imperative solution above is a functional interface to the array. In Java 8 and newer we can provide that easily and encapsulate the iteration over our array:

public class LegoBox  {
  public LegoBrick[] bricks = new LegoBrick[8000];
  public int brickCount = 0;

  public <R> R forAllBricks(Function<Brick, R> operation, R identity, BinaryOperator<R> reducer) {
    return Arrays.stream(bricks, 0, brickCount).map(operation).reduce(identity, reducer);
  }

  public void forAllBricks(Consumer<LegoBrick> operation) {
    Arrays.stream(bricks, 0, brickCount).forEach(operation);
  }
}

public int countRedBricks() {
  return box.forAllBricks(brick -> brick.isRed() ? 1 : 0, 0, (sum, current) -> sum + current);
}

The functional methods can be tailored to your specific needs, of course. I just provided two examples for possible functional interfaces and their implementation.

The function + reducer case is a very general interface and used here for an implementation of our “count the red bricks” use case. Alternatively you could implement this use case with a more specific but easier to use filter + count interface:

public class LegoBox  {
  public LegoBrick[] bricks = new LegoBrick[8000];
  public int brickCount = 0;

  public long countBricks(Predicate<Brick> filter) {
    return Arrays.stream(bricks, 0, brickCount).filter(operation).count();
  }
}

public int countRedBricks() {
  return box.countBricks(brick -> brick.isRed());
}

The consumer case is very simple and found a lot in this specific project because mutation of the array elements is a typical operation and all over the place.

The functional API avoids duplicating the iteration all the time and removes the need to access the array or iterable/collection. It is therefore much more in the spirit of “tell”.

Conclusion

The new interfaces allow for much simpler and maintainable client code and remove a lot of duplicated iterations on the client side. They can be introduced on the way when implementing requested features for the customer.

That way we invested only minimal effort in cleaner, better maintainable and more error-proof code. When someday all accesses to the public array are encapsulated we can use the new found freedom to internalize the array and change it to a better fitting data structure like an ArrayList.

A Game Optimization War Story

As our customers surely know, I’m not working here on fridays. This is because that’s the time I allocate to my side project, an arcade real-time strategy game called abstractanks. It is a passion project above all else, but of course, I am also learning a lot, much of which I can apply to my “day job” here as well. Today I want to share the story of how I optimized a critical bit of code in that game.

The Big Slowdown

While working on scripted missions, one main element I am using is to make a group of units attack when you enter an area (a.k.a. a zone-trigger). This seems easy enough, but was causing massive slowdowns as soon as the enemy group started moving. My average logic frame-time jumped from 0.3 ms to more than 1500 ms, which essentially makes the game unplayable. When seeing a performance problem, your first instinct should always be to profile it. So I booted up WPR/WPA and did just that. Once I had the profile, I followed the most-sampled path in the stack and found my way to the supposed culprit: the parking algorithm.

Context

When optimizing, you need as much context as you possible to find the best possible course of action. So let me explain how that algorithm fits into the broader picture.

Parking

My main game-mechanic is moving around your units. You do this by selecting a group and then clicking somewhere on the map to issue the move-order. In addition to path-finding process, this also runs an algorithm I call park-planning (as in parking a car). It makes sure that the units know to position themselves around the target point in a roughly circular shape once they arrive. It is essential to the interaction of this mechanic with the capturing of objectives, which are circular as well. Before this was implemented, the units would just decelerate after passing the target point. This caused them to “overshot” and miss the objectives, which was frustrating to the players: they clicked in the right place, but the units would not stop there, but slightly behind it. To make things worse, units arriving later, would bump into those that were already there, further pushing them away and clumping up.

AI Moving

In my particular case, the AI enemy was repeatedly issuing move-orders to close in on the intruder – the player. Since the player group usually also moved, the AI was trying to adapt by changing the move order every frame (effectively working at around 2000 APMs).

Diving into the code

My park-planning implementation is divided into two steps: finding enough parking spots, and then assigning units to it. The profiler was showing that the first part was the problem while the assignment was negligible in terms of run-time. Historically, the first step was reusing and extending some code I first wrote for spawning units, which worked like this:

optional<v2> GameWorld::FindFreePosition(v2 Center, std::vector<v2> const& Occupied)
{
  auto CheckPosition = [&](v2 Candiate)
  {
    if (!IsPassable(Candidate))
      return false;

    if (OverlapsWith(Occupied))
      return false;

    return !FriendlyUnitOccupies(Candidate);   
  };

  if (CheckPosition(Center))
    return Center;

  auto Radius = UNIT_SIZE;
  while (Radius < MAX_SEARCH_RADIUS)
  {
    // Roll a random starting angle
    auto AngleOffset = RandomAngle();
    auto Angle = 0.f;
    while (Angle < 2*Pi)
    {
      auto Candidate = Center + AngleVector(Angle + AngleOffset)*Radius;
      if (CheckPosition(Candidate))
        return Candidate;

      // Move along this circle
      Angle += 2*Pi*Radius / UNIT_SIZE / OVERSAMPLING_FACTOR;
    }

    // Increase the Radius
    Radius += UNIT_SIZE;
  }
  return none;  
}

Note that all the functions in the CheckPosition lambda are “size aware” and respect the UNIT_SIZE – so they are slightly more complex than what the pseudo-code here would have you believe.
The occupied parameter was added for the parking-position finding. It successively fills up the std::vector with positions and uses them once it found enough.

Back to the profiling results: They were showing that most of the time was spent in the FriendlyUnitOccupies, followed by IsPassable and and then OverlapsWith. FriendlyUnitOccupies dominated the time by about 8x times the rest. That function uses a quad-tree to accelerate spatial queries for other units.

Next steps

Obviously, this code uses pretty simplistic approach to the problem – basically just brute-forcing it. But that’s good now there are many different paths to take, many optimization opportunities. My approach was a relatively simple change that got the frame time back down below 1 ms, but before I did that, I considered many and tested a few other different approaches. I will talk about that in detail in my next post. How would you approach this?

Handling database warnings with JDBC

Database administrators have the possibility to set lifetimes for user passwords. This can be considered a security feature, so that passwords get updated regularly. But if one of your software services logs into the database with such an account, you want to know when the password expires in good time before this happens, so that you can update the password. Otherwise your service will stop working unexpectedly.

Of course, you can mark the date in your calendar in order to be reminded beforehand, and you probably should. But there is an additional measure you can take. The database administrator can not only set the lifetime of a password, but also a “grace period”. For example:

ALTER PROFILE app_user LIMIT PASSWORD_LIFE_TIME 180 PASSWORD_GRACE_TIME 14;

This SQL command sets the password life time to 180 days (roughly six months) and the grace period to 14 days (two weeks). If you log into the database with this user you will see a warning two weeks before the password will expire. For Oracle databases the warning looks like this:

ORA-28002: the password will expire within 14 days

But your service logs in automatically, without any user interaction. Is it possible to programmatically detect a warning like this? Yes, it is. For example, with JDBC the following code detects warnings after a connection was established:

// Error codes for ORA-nnnnn warnings
static final int passwordWillExpireSoon = 28002;
static final int accountWillExpireSoon = 28011;

void handleWarnings(Connection connection) throws SQLException {
    SQLWarning warning = connection.getWarnings();
    while (null != warning) {
        String message = warning.getMessage();
        log.warn(message);

        int code = warning.getErrorCode();
        if (code == passwordWillExpireSoon) {
            System.out.println("ORA-28002 warning detected");
            // handle appropriately
        }
        if (code == accountWillExpireSoon) {
            System.out.println("ORA-28011 warning detected");
            // handle appropriately
        }
        warning = warning.getNextWarning();
    }
}

Instead of just logging the warnings, you can use this code to send an email to your address, so that you will get notified about a soon-to-be-expired password in advance. The error code depends on your database system.

With this in place you should not be unpleasantly surprised by an expired password. Of course, this only works if the administrator sets a grace period, so you should agree on this approach with your administrator.

Analysing a React web app using SonarQube

Many developers especially from the Java world may know the code analysis platform SonarQube (formerly SONAR). While its focus was mostly integration all the great analysis tools for Java the modular architecture allows plugging tools for other languages to provide linter results and code coverage under the same web interface.

We are a polyglot bunch and are using more and more React in addition to our Java, C++, .Net and “what not” projects. Of course we would like the same quality overview for these JavaScript projects as we are used to in other ecosystems. So I tried SonarQube for react.

The start

Using SonarQube to analyse a JavaScript project is as easy as for the other languages: Just provide a sonar-project.properties file specifying the sources and some paths for analysis results and there you go. It may look similar to the following for a create-react-app:

sonar.projectKey=myproject:webclient
sonar.projectName=Webclient for my cool project
sonar.projectVersion=0.3.0

#sonar.language=js
sonar.sources=src
sonar.exclusions=src/tests/**
sonar.tests=src/tests
sonar.sourceEncoding=UTF-8

#sonar.test.inclusions=src/tests/**/*.test.js
sonar.coverage.exclusions=src/tests/**

sonar.junit.reportPaths=test-results/test-report.junit.xml
sonar.javascript.lcov.reportPaths=coverage/lcov.info

For the coverage you need to add some settings to your package.json, too:

{ ...
"devDependencies": {
"enzyme": "^3.3.0",
"enzyme-adapter-react-16": "^1.1.1",
"eslint": "^4.19.1",
"eslint-plugin-react": "^7.7.0",
"jest-junit": "^3.6.0"
},
"jest": {
"collectCoverageFrom": [
"src/**/*.{js,jsx}",
"!**/node_modules/**",
"!build/**"
],
"coverageReporters": [
"lcov",
"text"
]
},
"jest-junit": {
"output": "test-results/test-report.junit.xml"
},
...
}

This is all nice but the set of built-in rules for JavaScript is a bit thin and does not fit React apps nicely.

ESLint to the recue

But you can make SonarQube use ESLint and thus become more useful.

First you have to install the ESLint Plugin for SonarQube from github.

Second you have to setup ESLint to your liking using eslint --init in your project. That results in a eslintrc.js similar to this:

module.exports = {
  'env': {
    'browser': true,
    'commonjs': true,
    'es6': true
  },
  'extends': 'eslint:recommended',
  'parserOptions': {
    'ecmaFeatures': {
      'experimentalObjectRestSpread': true,
      'jsx': true
    },
    'sourceType': 'module'
  },
  'plugins': [
    'react'
  ],
  'rules': {
    'indent': [
      'error',
      2
    ],
    'linebreak-style': [
      'error',
      'unix'
    ],
    'quotes': [
      'error',
      'single'
    ],
    'semi': [
      'error',
      'always'
    ]
  }
};

Lastly enable the ESLint ruleset for your project in sonarqube and look at the results. You may need to tune one thing or another but you will get some useful static analysis helping you to improve your code quality further.