The real value of DSLs

A few years ago, domain specific languages (DSLs) were a really hot topic and “the future”. Now, after the dust has settled there are a bunch of successful and useful examples like LINQ and Gradle but no holy grail buzz anymore.

In some of our projects we did implement some small embedded DSLs (eDSL) if we expected great benefit. Most of the time they are just working silently in the background of our solutions. But sometimes they really shine:

A recent story involving a DSL

A few days ago, I got a request from one of our customers regarding a complex “traffic light”-like system for scientific proposals in a proposal submission system. Each proposal goes through a bunch of phases where different parties have participate. While that sounds relatively simple our system has different proposal types, different roles, different states over time and so on.

All of the above leads to “Starbuck’s menu”-style complexity. And now, after several years in production the customer comes up with some special cases that are counterintuitive.

Expecting the worst I dived into the source code and was delighted to see a quite expressive DSL. Our project and thus also the DSL for the “status overview” feature leveraged the flexible syntax of Groovy (which is also used by Gradle). After a few minutes I could not only understand all the rules for the different status lights but also pin-point the cases in question.

I then moved forward and used the rule definition in our DSL to talk to our customer directly! And after a few more minutes he – as the domain expert – also understood our rule definition and the cause for the irritating display of a certain combination of proposal type, role and phase.

The fix was more or less straightforward and I simply handed that one source file to our customer for future reference.

Here is an excerpt of our status phase rules written in our own DSL:

PhaseRules {
    submission {
        green {
            proposal.isValidated()
        }
        red {
           !proposal.isValidated()
        }
        white {
            false
        }
        user {
            yellow {
                proposal.isCallPhaseIndependent())
            }
            grey {
                false
            }
        }
        scientist {
            yellow {
                false
            }
            grey {
                proposalNeedsValidationByProposer(proposal)
            }
        }
        userOffice {
            yellow {
                false
            }
            grey {
                proposalNeedsValidationByProposer(proposal)
            }
        }
    }

    check {
        green {
            proposal.isValidated() && proposal.hasFeasibilityComment()
        }
        red {
        }
    }
    // more phases, roles, states and rules omitted...
}

In that moment I was very proud of my project team, their decision to implement a DSL for this feature and an appropriate implementation.

It saved me a lot of headaches and quite some time. Furthermore it reinforced our customers trust in the application and improved the transparency and traceability of our solution.

This high level abstraction let both me and the customer ignore all the implementation details and focus on the actual functionality and behaviour correcting/improving the status display for our users.

Updating Grails: From 5 to 6

We have a long history of maintaining quite a large grails application since Grails 1.0. Over the first few major versions upgrading was a real pain.

The situation changed dramatically after Grails 3 as you can see in our former blog posts and and the upgrade from 3 to 4. Going from 4 to 5 was so smooth that I did not even dedicate a blog post to it.

A few weeks ago we decided to upgrade from version 5 to 6 and here is a short summary of our experiences. Things fortunately went quite smooth again:

The changes

The new major version 6 contains mostly dependency upgrades and official support for Java 17 which is probably the biggest selling point.

Some other minor things to note are without any particular order:

  • The logback configuration file name has changed from logback.groovy to logback-config.groovy
  • The pathing-jar is already setup for you, so you can remove the directive from your build files if you had it in
  • The build uses the standard gradle-application plugin allowing some more simplifications in your build files and infrastructure

Other noteworthy news

Object Computing stepped down as the steward of the grails framework and informed the community in an open letter. While there is still the grails foundation and the open source community we can expect the development and changes to slow down.

Whether this results in negative developer experience remains to be seen.

Conclusion

Using and maintaining a Grails application developed to a rather smooth ride and only poorly maintained plugins hurt your experience. The framework and its foundation have been pretty solid for some time now.

Regarding new projects you certainly have to evaluate if using grails is the best option. For an full stack framework the answer maybe yes, but if you only need a powerful API backend lighter and more modern frameworks like micronaut or javalin may be a better choice.

Converting a Grails app from war deployment in Tomcat to docker

A few years ago we had real servers with servlet containers installed and managed by administrators. These machines were bare-metal unicorns and had to be kept alive as long as possible (for many years). With the advent of first virtual machines and then container runtimes like Docker the approach and responsibilities for hosting web applications changed.

Our application not only went from Grails framework version 1 to 5 (atm, and soon to version 6) but also the above voyage regarding the hosting environment.

While the step from bare-metal to virtual machine was negligible from the developer and application side the migration to docker-based hosting is quite a step. Therefore I would like to depict the biggest changes of running a Grails application as a WAR deployment in Tomcat to a standalone application in Docker.

The original setting

We had our Grails application running on a server with a Tomcat servlet container for years. On the server we had also an ElasticSearch instance running and saved documents in a few well-defined directories on the local file system. Our database (Oracle in the past, PostgreSQL for over a year now) was running managed in a data center. We used container features like JNDI for parts of the configuration and datasources.

Deployment was essentially uploading a new WAR and context.xml file to the Tomcat servlet container using an Ansible playbook (where we restarted the servlet container to ensure not leaving any resource leaks…).

This setup worked quite well for years, only upgrades of the host operating system along with Tomcat and Java Virtual Machine (JVM) updates meant some work.

The target setup

Our customer has been in the process of converting most of the services running on virtual machines to dockerized deployments managed using Portainer. Most of the provisioning is automated and there is almost no snow flaking of the virtual machines hosting the docker runtimes. This eases the operation and administration of the services a lot and makes it much easier to setup new instances of a service and to monitor them.

So it was our task to migrate our setup on the the host VM to a docker-based deployment. In the future we basically push a docker image of our application to a docker registry of the customer and update the stack using Portainer.

The journey to a dockerized Grails app

The first thing to do were some changes to build.gradle to build a Jar-application instead of a WAR archive. We decided it was easier and more lightweight to run the Grails app standalone with the embedded tomcat than to use Tomcat in a docker container:

  • Remove the gradle war plugin
  • Change providedCompile dependencies to implementation
  • Add a task to prepare the Dockerfile and context to build our bootable application image:
task prepareDocker(type: Copy, dependsOn: assemble) {
    description = 'Copy files from src/main/docker and application jar to Docker temporal build directory'
    group = 'Docker'

    from 'src/main/docker'
    from project.bootJar

    into dockerBuildDir
}
  • Add an appropiate Dockerfile to our docker context in src/main/docker:
FROM eclipse-temurin:11-jdk-jammy
MAINTAINER Mihael Koep "mihael.koep@softwareschneiderei.de"

EXPOSE 8080

WORKDIR /app
COPY naomi-boot.jar .

ENV GRAILS_ENV development
# Additional env variables for configuration

CMD java -Dgrails.env=$GRAILS_ENV -jar /app/application-boot.jar
  • Remove JNDI usages and convert configuration from context.xml and JNDI to environment variables
  • Add a docker-compose.yml for the stack definition (here outlined for development with a database as part of the stack)
version: '3.7'
services:
  my-app:
    container_name: my-app-application
    image: ${IMAGE_TAG}
    environment:
      - GRAILS_ENV=development
      - DB_URL=jdbc:postgresql://my-app-db:5432/my-app
    volumes:
      - my-appdata:/app/data_home
    ports:
      - 8080:8080
    depends_on:
      - my-app-db
      - my-app-elastic
  my-app-db:
    container_name: my-app-database-stack
    image: postgres:13
    environment:
      - POSTGRES_USER=my-app
      - POSTGRES_PASSWORD=my-db-password
      - POSTGRES_DB=my-app
    ports:
      - 5432:5432
  my-app-elastic:
    container_name: my-app-elastic-stack
    image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
    environment:
      - node.name=es01
      - cluster.name=my-app-es
      - discovery.type=single-node
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - searchdata:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
      - 9300:9300
volumes:
  searchdata:
  my-appdata:

Conclusion

The journey from classical deployments to a dockerized environment using a docker stack is not that long for a Grails application (or most other Java web applications). It makes it trivial setting up a new instance or migrating it to another host as most configuration is in version controlled files and there is next to none snowflaking. The customer has an easier time running the web application because the requirements are only a container-runtime and explicitly formulated in the stack definition.

In addition, the developers are free to choose the JVM and other details within the containers without having to cross-check with the administrators of the customer if they are supported by their organization.

Grails Domain update optimisation

As many readers may know we are developing and maintaining some Grails applications for more than 10 years now. One of the main selling points of Grails is its domain model and object-relational-mapper (ORM) called GORM.

In general ORMs are useful for easy and convenient development at the cost of a bit of performance and flexibility. One of the best features of GORM is the availability of several flexible APIs for use-cases where dynamic finders are not enough. Let us look at a real-world example.

The performance problem

In one part of our application we have personal messages that are marked as read after viewing. For some users there can be quite a lot messages so we implemented a “mark all as read”-feature. The naive implementation looks like this:

def markAllAsRead() {
    def user = securityService.loggedInUser
    def messages = Messages.findAllByUserAndTimelineEntry.findAllByAuthorAndRead(user, false)
    messages.each { message ->
        message.read = true
        message.save()
    }
    Messages.withSession { session -> session.flush()}
 }

While this is both correct and simple it only works well for a limited amount of messages per user. Performance will degrade because all the domain objects are loaded into domain objects, then modified and save one-by-one to the session. Finally the session is persisted to the database. In our use case this could take several seconds which is much too long for a good user experience.

DetachedCriteria to the rescue

GORM offers a much better solution for such use-cases that does not sacrifice expressiveness. Instead it offers a succinct API called “Where Queries” that creates DetachedCriteria and offers batch-updates.

def markAllAsRead() {
    def user = securityService.loggedInUser
    def messages = Messages.where {
        read == false
        addressee == user
    }
    messages.updateAll(read: true)
}

This implementation takes only a few milliseconds to execute with the same dataset as above which is de facto native SQL performance.

Conclusion

Before cursing GORM for bad performance one should have a deeper look at the alternative querying APIs like Where Queries, Criteria, DetachedCriteria, SQL Projections and Restrictions to enhance your ORM toolbox. Compared to dynamic finders and GORM-methods on domain objects they offer better composability and performance without resorting to HQL or plain SQL.

Migrating a Grails application from Oracle to PostgreSQL

In my previous post I explained how to migrate an Oracle schema with data to a PostgreSQL database management system (DBMS). Besides the general tasks and issues there are additional topics to migrate a complete application using the database to the other DBMS.

In our specific case we have a grails application which we maintain since Grails 1.0 times for more than 12 years. During that time we did a ton of feature development with lots of refactoring and many database migrations. So the source database will most like not be perfectly consistent and clean.

General approach

Since Grails/GORM and the DatabaseMigration-Plugin (DBM-Plugin) do a great job at preparing an empty database with a matching schema for the application to run we let the framework tools generate the schema and only migrate the data using Ora2Pg.

Sounds simple, but how it is done in detail and what else to look for?

Generating the initial dabase schema

The DBM-Plugin provides a script to create a database changelog with a schema matching the domain model of your grails application. It is integrated in gradle, so you can grails dbm-generate-gorm-changelog initialdb.groovy to create the migration scripts providing a fitting schema. You then include this script in grails-app/migrations/changelog.groovy or replace all the migrations you had before included there with this initial database changelog.

To prepare an empty database to run with your application you call the gradle task dbmUpdate.

Checking all plain SQL code

If you are only using GORM’s dynamic finders, save()/update()/delete()-methods, HQL and the criteria API you are probably fine to run your application or perform the data mirgration step.

Our application has some specific parts where we use plain SQL. Because of syntactical differences you will want to check all the plain SQL if it works with PostgreSQL. The most obvious stuff is dealing with sequences or other queries where you need the dual table in Oracle.

Migrating the data

This is probably the part where the most things can go wrong. We had quite some work with data-inconsistencies and left-overs from manual corrections that happened over the course of running and upgrading the application for so many year. For younger and simpler applications this may not present any challenges but for us it was quite time-consuming.

Now you can use Ora2Pg to import the data. After the whole data import using Ora2Pg worked as intended you should check the value of the hibernate_sequence . This sequence is used to generate the ids of all grails domain objects.

Do not let the sequences from the autoincrement columns of the tables of your domain objects confuse you! They are not used by Grails/GORM. To avoid this confusion you can remove the default value of the id columns and the accompanying sequences.

Checking the result

You should always run acceptance or manual tests to make sufficiently sure that the migration worked as intended. There is always the possibility of a configuration or software error or some oversights in checking the application code.

If possible tests the result on a dedicated system with some snapshot of the real world data before making the switch on the production system. Good luck!

Object slicing with Grails and GORM

Some may know the problem called object slicing when passing or assigning polymorphic objects by value in C++. The issue is not limited to C++ as we experienced recently in one of our web application based on Grails. If you are curious just stay awhile and listen…

Our setting

Some of our domain entities use inheritance and their containing entities determine what to do using some properties. You may call that bad design but for now let us take it as it is and show some code to clarify the situation:

@Entity
class Container {
  private A a

  def doSomething() {
    if (hasActuallyB()) {
      return a.bMethod()
    }
    return a.something()
  }
}

@Entity
class A {

  def something() {
    return 'Something A does'
  }
}

@Entity
class B extends A {

  def bMethod() {
    return 'Something only B can do'
  }
}

class ContainerController {

  def save = {
    new Container(b: new B()).save()
  }

  def show = {
    def container = Container.get(params.id)
    [result: container.doSomething()]
  }
}

Such code worked for us without problems in until we upgraded to Grails 3. Suddenly we got exceptions like:

2019-02-18 17:03:43.370 ERROR --- [nio-8080-exec-1] o.g.web.errors.GrailsExceptionResolver   : MissingMethodException occurred when processing request: [GET] /container/show
No signature of method: A.bMethod() is applicable for argument types: () values: []. Stacktrace follows:

Caused by: groovy.lang.MissingMethodException: No signature of method: A.bMethod() is applicable for argument types: () values: []
at Container.doSomething(Container.groovy:123)

Debugging showed our assumptions and checks were still true and the Container member was saved correctly as a B. Still the groovy method call using duck typing did not work…

What is happening here?

Since the domain entities are persistent objects mapped by GORM and (in our case) Hibernate they do not always behave like your average POGO (plain old groovy object). They may in reality be Javassist proxy instances when fetched from the database. These proxies are set up to respond to the declared type and not the actual type of the member! Clearly, an A does not respond to the bMethod().

A workaround

Ok, the class hierarchy is not that great but we cannot rewrite everything. So what now?

Fortunately there is a workaround: You can explicitly unwrap the proxy object using GrailsHibernateUtil.unwrapIfProxy() and you have a real instance of B and your groovy duck typing and polymorphic calls work as expected again.

Consistency over magic, please

The Groovy programming language is a JVM based scripting language. It is used by the Grails web framework and the Gradle build automation system.

Groovy has a language feature called Named argument constructors. This means that given a class with properties, for example

class Example {
  String text
}

you can initialize the properties directly when calling the constructor:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

This is basically a shortcut for initializing the properties via explicit assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So far so good.

Enter Grails

We use the aforementioned Grails framework for some of our web application projects. It is advertised on its website as featuring “convention-over-configuration” and “sensible defaults”. Grails uses the Groovy programming language, and a simple domain class looks just like a plain old Groovy class, except that it lives under the grails-app/domain directory (this is one of the convention-over-configuration aspects):

class Example {
  String text
}

As expected, you can initialize the property via regular assignment:

def example = new Example()
example.text = ' This is an example. '
assert example.text == ' This is an example. '

So one might expect that you can initialize it via a named argument constructor call as well:

def example = new Example(text: ' This is an example. ')
assert example.text == ' This is an example. '

And indeed, you can. But what’s this? Our assertion fails:

assert example.text == ' This is an example. '
               |    |
               |    false
               This is an example.

It is not directly obvious from the assertion failure output, but the property value is indeed no longer equal to the expected text: the leading and trailing spaces got trimmed!

I was surprised, but after some research in Grails documentation it turned out that it’s not a bug, but a feature. In the section on Data Binding, you can find the following sentence:

The mass property binding mechanism will by default automatically trim all Strings at binding time. To disable this behavior set the grails.databinding.trimStrings property to false in grails-app/conf/application.groovy.

Groovy’s named argument constructor feature is used as a data binding mechanism by Grails to bind web request parameters to a domain object. For this the default behavior was modified, so that strings are automatically trimmed. I can only guess that this is considered to be an instance of the “sensible defaults” mentioned on the Grails homepage.

To me personally this kind of surprising behavior is not a sensible default, and I think it goes against the Principle of least astonishement. I prefer consistency over “magic”.

Gradle projects as Debian packages

Gradle is a great tool for setting up and building your Java projects. If you want to deliver them for Ubuntu or other debian-based distributions you should consider building .deb packages. Because of the quite steep learning curve of debian packaging I want to show you a step-by-step guide to get you up to speed.

Prerequisites

You have a project that can be built by gradle using gradle wrapper. In addition you have a debian-based system where you can install and use the packaging utilities used to create the package metadata and the final packages.

To prepare the debian system you have to install some packages:

sudo apt install dh-make debhelper javahelper

Generating packaging infrastructure

First we have to generate all the files necessary to build full fledged debian packages. Fortunately, there is a tool for that called dh_make. To correctly prefill the maintainer name and e-mail address we have to set 2 environment variables. Of course, you could change them later…

export DEBFULLNAME="John Doe"
export DEBEMAIL="john.doe@company.net"
cd $project_root
dh_make --native -p $project_name-$version

Choose “indep binary” (“i”) as type of package because Java is architecture indendepent. This will generate the debian directory containing all the files for creating .deb packages. You can safely ignore all of the files ending with .ex as they are examples features like manpage-generation, additional scripts pre- and post-installation and many other aspects.

We will concentrate on only two files that will allow us to build a nice basic package of our software:

  1. control
  2. rules

Adding metadata for our Java project

In the control file fill all the properties if relevant for your project. They will help your users understand what the package contains and whom to contact in case of problems. You should add the JRE to depends, e.g.:

Depends: openjdk-8-jre, ${misc:Depends}

If you have other dependencies that can be resolved by packages of the distribution add them there, too.

Define the rules for building our Java project

The most important file is the rules makefile which defines how our project is built and what the resulting package contents consist of. For this to work with gradle we use the javahelper dh_make extension and override some targets to tune the results. Key in all this is that the directory debian/$project_name/ contains a directory structure with all our files we want to install on the target machine. In our example we will put everything into the directory /opt/my_project.

#!/usr/bin/make -f
# -*- makefile -*-

# Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

%:
	dh $@ --with javahelper # use the javahelper extension

override_dh_auto_build:
	export GRADLE_USER_HOME="`pwd`/gradle"; \
	export GRADLE_OPTS="-Dorg.gradle.daemon=false -Xmx512m"; \
	./gradlew assemble; \
	./gradlew test

override_dh_auto_install:
	dh_auto_install
# here we can install additional files like an upstart configuration
	export UPSTART_TARGET_DIR=debian/my_project/etc/init/; \
	mkdir -p $${UPSTART_TARGET_DIR}; \
	install -m 644 debian/my_project.conf $${UPSTART_TARGET_DIR};

# additional install target of javahelper
override_jh_installlibs:
	LIB_DIR="debian/my_project/opt/my_project/lib"; \
	mkdir -p $${LIB_DIR}; \
	install lib/*.jar $${LIB_DIR}; \
	install build/libs/*.jar $${LIB_DIR};
	BIN_DIR="debian/my_project/opt/my_project/bin"; \
	mkdir -p $${BIN_DIR}; \
	install build/scripts/my_project_start_script.sh $${BIN_DIR}; \

Most of the above should be self-explanatory. Here some things that cost me some time and I found noteworthy:

  • Newer Gradle version use a lot memory and try to start a daemon which does not help you on your build slaves (if using a continous integration system)
  • The rules file is in GNU make syntax and executes each command separately. So you have to make sure everything is on “one line” if you want to access environment variables for example. This is achieved by \ as continuation character.
  • You have to escape the $ to use shell variables.

Summary

Debian packaging can be daunting at first but using and understanding the tools you can build new packages of your projects in a few minutes. I hope this guide helps you to find a starting point for your gradle-based projects.

Functional tests for Grails with Geb and geckodriver

Previously we had many functional tests using the selenium-rc plugin for Grails. Many were initially recorded using Selenium IDE, then refactored to be more maintainable. These refactorings introduced “driver” objects used to interact with common elements on the pages and runners which improved the API for walking through a multipage process.

Selenium-rc got deprecated quite a while ago and support for Firefox broke every once in a while. Finally we were forced to migrate to the current state-of-the-art in Grails functional testing: Geb.

Generally I can say it is really a major improvement over the old selenium API. The page concept is similar to our own drivers with some nice features:

  • At-Checkers provide a standardized way of checking if we are at the expected page
  • Default and custom per page timeouts using atCheckWaiting
  • Specification of relevant content elements using a JQuery-like syntax and support for CSS-selectors
  • The so-called modules ease the interaction with form elements and the like
  • Much better error messages

While Geb is a real improvement over selenium it comes with some quirks. Here are some advice that may help you in successfully using geb in the context of your (grails) webapplication.

Cross-plattform testing in Grails

Geb (or more specifically the underlying webdriver component) requires a geckodriver-binary to work correctly with Firefox. This binary is naturally platform-dependent. We have a setup with mostly Windows machines for the developers and Linux build slaves and target systems. So we need binaries for all required platforms and have to configure them accordingly. We have simply put them into a folder in our project and added following configuration to the test-environment in Config.groovy:

environments {
  test {
    def basedir = new File(new File('.', 'infrastructure'), 'testing')
    def geckodriver = 'geckodriver'
    if (System.properties['os.name'].toLowerCase().contains('windows')) {
      geckodriver += '.exe'
    }
    System.setProperty('webdriver.gecko.driver', new File(basedir, geckodriver).canonicalPath)
  }
}

Problems with File-Uploads

If you are plagued with file uploads not working it may be a Problem with certain Firefox versions. Even though the fix has landed in Firefox 56 I want to add the workaround if you still experience problems. Add The following to your GebConfig.grooy:

driver = {
  FirefoxProfile profile = new FirefoxProfile()
  // Workaround for issue https://github.com/mozilla/geckodriver/issues/858
  profile.setPreference('dom.file.createInChild', true)
  new FirefoxDriver(profile)
}

Minor drawbacks

While the Geb-DSL is quite readable and allows concise tests the IDE-support is not there. You do not get much code assist when writing the tests and calling functions of the page objects like in our own, code based solution.

Conclusion

After taking the first few hurdles writing new functional tests with Geb really feels good and is a breeze compared to our old selenium tests. Converting them will be a lot work and only happen on a case-by-case basis but our coverage with Geb is ever increasing.

Explicit types – and when to use them

Many modern programming languages offer a way declare variables without an explicit type if the type can be inferred, either dynamically or statically. Many also allow for variables to be explicitly defined with a type. For example, Scala and C# let you omit the explicit variable type via the var keyword, but both also allow defining variables with explicit types. I’m coming from the C++ world, where “auto” is available for this purpose since the relatively recent C++11. However, people are still debating whether you should actually use it.

Pros

Herb Sutter popularised the almost-always-auto style. He advocates that using more type inference is good because it is roughly equivalent to programming against interfaces instead of implementations. He says that “Overcommitting to explicit types makes code less generic and more interdependent, and therefore more brittle and limited.” However, he also mentions that you might sometimes want to use explicit types.

Now what exactly is overcommiting here? When is the right time to use explicit types?

Cons

Opponents to implicit typing, many of them experienced veterans, often state that they want the actual type visible in the source code. They don’t want to rely on type inference being right. They want the code to explicitly state what’s going on.

At first, I figured that was just conservatism in the face of a new “scary” feature that they did not fully understand. After all, IDEs can usually infer the type on-the-fly and you can hover on a variable to let it show you the type.

For C++, the function signature is a natural boundary where you often insert explicit types, unless you want to commit to the compile time and physical dependency cost that comes with templates. Other languages, such as Groovy, do not have this trade-off and let you skip explicit types almost everywhere. After working with Groovy/Grails for a while, where the dominant style seems to be to omit types whereever possible, it dawned on me that the opponents of implicit typing have a point. Not only does the IDE often fail to show me the inferred type (even though it still works way more often than I would have anticipated), but I also found it harder to follow and modify code that did not mention explicit types. Seemingly contrary to Herb Sutter’s argument, that code felt more brittle than I had liked.

Middle-ground

As usual, the truth seems to be somewhere in the middle. I propose the following rule for when to use explicit types:

  • Explicit typing for domain-types
  • Implicit typing everywhere else

Code using types from the problem domain should be as specific as possible. There’s no need for it to be generic – it’s actually counter-productive, as otherwise the code model would be inconsistent with model of the problem domain. This is also the most important aspect to grok when reading code, so it should be explicit. The type is as important as the action on it.

On the other hand, for pure-fabrication types that do not respresent a concept in the domain, the action is important, while the type is merely a means to achieve this action. Typically, most of the elements from a language’s standard library fall into this category. All your containers, iterators, callables. Their types are merely implementation details: an associative container could be an array, or a hash-map or a tree structure. Exchanging it rarely changes the meaning of the code in the problem domain – it just changes its performance characteristics.

Containers will occasionally contain domain-types in their type. What do you do about those? I think they belong in the “everywhere else” catergory, but you should be take extra care to name the contained type when working with it – for example when declaring the variable of the for-each loop on it, or when inserting something into it. This way, the “collection of domain-type” aspect will become clear, but the specific container implementation will stay implicit – like it should.

What do you think? Is this a useful proposition for your code?